3 Gunther K, Bolling F, Huneus H. Detrimental effect of oxidation on magnetic properties of nonoriented electrical steel sheet. J Appl Phys, 1988, 64: 5347-5357
[2]
11 Toda H, Sato K, Komatsubara M. Characterization of internal oxide layers in 3% Si grain-oriented steel by electrochemical methods. J Mater Eng Perform, 1997, 6: 722-727
[3]
12 Cesar M D M M, Mantel M J. Effect of the temperature and dew point of the decarburization process on the oxide subscale of a 3% silicon steel. J Magn Magn Mater, 2003, 254-255: 337-339
[4]
1 Beckley P. European Electrical Steels. Wales: Orb Works, 2000. 372-375
4 Jiles D. Introduction to Magnetism and Magnetic Materials. London: Chapman & Hall, 1991. 272
[7]
5 Korousic B, Jenko M, Stupnisek M. The gas composition that causes oxide scale formation during the decarburization of non-oriented electrical steel sheets. Steel Res, 2002, 73: 63-68
[8]
6 Soenen B, Jacobs S, De Wulf M. Modelling decarbruization kinetics in electrical steels. Steel Res Int, 2005, 76: 425-428
[9]
7 Swisher J H, Turkdogan E T. Decarburization of iron-carbon melts in CO2-CO atmospheres: Kinetics of gas-metal surface reactions. Trans Metall Soc AIME, 1968, 242: 763-765
[10]
8 Pyyry J, Kettunen P. Decarburization in plain carbon steel. Scand J Metall, 1973, 2: 265-268
[11]
9 Marder A R, Perpetua S M, Kowalik J A, et al. The effect of carbon content on the kinetics of decarburization in Fe-C alloys. Metall Trans A, 1985, 16A: 1160-1163
[12]
10 Marini P, Abbruzzese G. Decarburization rate related to surface oxidation of grain oriented silicon steel. J Magn Magn Mater, 1982, 26: 15-21