全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

多功能复合的人工肾微芯片的制备及功能评估

DOI: 10.1360/972013-711, PP. 1723-1731

Keywords: 微流道芯片,细胞工程,透析,生理功能

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用微流道技术加工出高度平行的微流道阵列芯片,并结合细胞工程的方法,制备出同时具有肾小球过滤和肾小管生理功能的人工肾微芯片透析装置.将人肾近曲小管上皮细胞(HK-2)和人脐静脉血管内皮细胞(HUVEC)分别种植在透析膜材料上,并与微流道阵列芯片组装成多层生物芯片人工肾微透析装置;分别对组装的两层生物芯片微透析装置和六层生物芯片微透析装置进行了功能评估对比.结果表明,六层芯片微透析器具有很好的清除功能,其中种植了细胞的聚醚砜作为透析膜具有最好的滤过性能;种植了细胞的生物透析器具有很好的抗凝功能,能够达到无肝素透析;同时也证实构建的多层生物芯片人工肾微透析装置具有很好的重吸收、新陈代谢和内分泌功能,为未来发展便携式或可植入式多功能复合的人工肾透析系统打下了基础.

References

[1]  1 Joffy S,Rosner M H.Natriuretic peptides in ESRD.Am J Kidney Dis,2005,46: 1-10
[2]  2 Song J J,Guyette J P,Gilpin S E,et al.Regeneration and experimental orthotopic transplantation of a bioengineered kidney.Nat Med,2013,19: 646-651
[3]  3 Kjellstrand C M.My addiction: The artificial kidney,the rise and fall of dialysis.Artif Organs,2012,36: 575-580
[4]  4 Ye S H,Watanabe J,Takai M,et al.Design of functional hollow fiber membranes modified with phospholipid polymers for application in total hemopurification system.Biomaterials,2005,26: 5032-5041
[5]  11 Fissell W H,Roy S,Davenport A.Achieving more frequent and longer dialysis for the majority: Wearable dialysis and implantable artificial kidney devices.Kidney Int,2013,84: 256-264
[6]  12 Dankers P Y W,Boomker J M,Huizinga-van der Vlag A,et al.Bioengineering of living renal membranes consisting of hierarchical,bioactive supramolecular meshes and human tubular cells.Biomaterials,2011,32: 723-733
[7]  13 Walker G M,Zeringue H C,Beebe D J.Microenvironment design considerations for cellular scale studies.Lab Chip,2004,4: 91-97
[8]  16 Viravaidya K,Sin A,Shuler M L.Development of a microscale cell culture analog to probe naphthalene toxicity.Biotechnol Progr,2004,20: 316-323
[9]  20 Ferrell N,Ricci K B,Groszek J,et al.Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor.Biotech Bioeng,2012,109: 797-803
[10]  21 Jang K J,Suh K Y.A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.Lab Chip,2010,10: 36-42
[11]  22 Jang K J,Cho H S,Kang D H,et al.Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells.Integr Biol,2011,3: 134-141
[12]  23 Gao X F,Tanaka Y,Sugii Y,et al.Basic structure and cell culture condition of a bioartificial renal tubule on chip towards a cell-based separation microdevice.Anal Sci,2011,27: 907-912
[13]  5 Pullela S R,Andres C,Chen W,et al.Permselectivity replication of artificial glomerular basement membranes in nanoporous collagen multilayers.J Phys Chem Lett,2011,2: 2067-2072
[14]  6 Davenport A,Ronco C,Gura V.Portable and wearable dialysis: Where are we now? Hemodial Int,2010,14 (Suppl 1): S22-S26
[15]  7 Davenport A,Ronco C,Gura V.From wearable ultrafiltration device to wearable artificial kidney.In: Ronco C,Rosner M H,eds.Hemodialysis: New Methods and Future Technology.Basel: S.Karger AG,2011.237-242
[16]  8 Humes H D,Mackay S M,Funke A J,et al.Tissue engineering of the bioartificial renal tubule assist device: In vitro transport and metabolic characteristics.Kidney Int,1999,55: 2502-2514
[17]  9 Ozgen N,Terashima M,Aung T,et al.Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1cells.Nephrol Dial Transplant,2004,19: 2198-2207
[18]  10 Saito A,Sawada K,Fujimura S.Present status and future perspectives on the development of bioartificial kidneys for the treatment of acute and chronic renal failure patients.Hemodial Int,2011,15: 183-192
[19]  14 Leclerc E,Sakai Y,Fujii T.Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane).Biomed Microdevices,2003,5: 109-114
[20]  15 Powers M J,Domansky K,Kaazempur-Mofrad M R,et al.A microfabricated array bioreactor for perfused 3D liver culture.Biotechnol Bioeng,2002,78: 257-269
[21]  17 Walker G M,Ozers M S,Beebe D J.Insect cell culture in microfluidic channels.Biomed Microdevices,2002,4: 161-166
[22]  18 Huh D,Matthews B D,Mammoto A,et al.Reconstituting organ level lung functions on a chip.Science,2010,328: 1662-1668
[23]  19 Ferrell N,Desai R R,Fleischman A J,et al.A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells.Biotech Bioeng,2010,107: 707-716
[24]  24 Saito A,Sawada K,Fujimura S,et al.Evaluation of bioartificial renal tubule device prepared with lifespan-extended human renal proximal tubular epithelial cells.Nephrol Dial Transplant,2012,27: 3091-3099
[25]  25 Kaazempur-Mofrad M R,Vacanti J P,Krebs N J,et al.A MEMS-based renal replacement system.In: Solid-State Sensor,Actuator and Microsystems Workshop,2004 June 6-10,Hilton Head Island.67-70
[26]  26 Nissenson A R,Ronco C,Pergamit G,et al.The human nephron filter: Toward a continuously functioning,implantable artificial nephron system.Blood Purificat,2005,23: 269-274
[27]  27 Lee K H,Kim D J,Min B G,et al.Polymeric nanofiber web-based artificial renal microfluidic chip.Biomed Microdevices,2007,9: 435-442
[28]  28 Xu F J,Li Y L.Heparin-coupled poly(poly(ethyleneglycol) monomethacrylate)-Si(111) hybrids and their blood compatible surfaces.Biomacromolecules,2005,6: 1759-1768
[29]  29 Wang D A,Ji J,Feng L X.Selective binding of albumin on stearyl poly(ethylene oxide) coupling polymer-modified surfaces.Biomaterials,2001,12: 1123-1146
[30]  30 H?rl W H,Koch K M,Lindsay R M,et al.Replacement of Renal Function by Dialysis.5th ed.Dordrecht: Kluwer Academic Publishers,2004.313
[31]  31 吕民,符邵鹏,张秀和.高肺血流致肺动脉高压幼猪模型中血清内皮素水平的变化.中国实验诊断学,2012,8: 1360-1362

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133