全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

天然湿地演替带氮循环研究进展

DOI: 10.1360/csb2014-59-18-1688, PP. 1688-1699

Keywords: 氮循环,演替带,天然湿地,氮来源,氮衰减,人类活动

Full-Text   Cite this paper   Add to My Lib

Abstract:

氮(N)是天然湿地生态系统中最重要的组成成分和一种重要的生态影响因子,其主要来源有径流输入、大气沉降和生物固氮.天然湿地中N的迁移和转化主要发生在湿地演替带,演替带是生物地球化学活动比较强烈的缓冲区,常被视为湿地的N源、N汇和N转化器.演替带中N衰减主要是通过反硝化、厌氧氨氧化和湿地植被吸收等方式进行.本研究综合分析了影响湿地N循环的内部因素和人为因素,其中N来源主要受农业活动和化石燃料燃烧等人工因素的影响,而N衰减主要受氧浓度、可利用的碳和磷、酸碱度和氧化还原电位变化以及微生物活动等内部因素影响.在此基础上提出了湿地演替带中N循环未来的研究方向,为湿地N污染治理和湿地管理决策者提供科学依据.

References

[1]  137 Van Drecht G,Bouwman A F,Knoop J M,et al.Global modeling of the fate of nitrogen from point and nonpoint sources in soils,groundwater,and surface water.Glob Biogeochem Cycle,2003,17: 1115
[2]  138 Levy H,Moxim W J.Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel combustion.Tellus,1989,41: 256-271
[3]  139 Hameeda S,Dignon J.Global emissions of nitrogen and sulfur oxides in fossil fuel combustion 1970-1986.J Mr Waste Manage Assoc,1992,42: 159-163
[4]  140 Seitzinger S.Nitrogen cycle: Out of reach.Nature,2008,452: 162-163
[5]  141 Maazouzi C,Claret C,Dole-Olivier M J,et al.Nutrient dynamics in river bed sediments: Effects of hydrological disturbances using experimental flow manipulations.J Soils Sediments,2013,13: 207-219
[6]  142 Jennerjahn T C.Biogeochemical response of tropical coastal systems to present and past environmental change.Earth-Sci Rev,2012,114: 19-41
[7]  143 Wood P J,Armitage P D.Biological effects of fine sediment in the lotic environment.Environ Manage,1997,21: 203-217
[8]  1 Canfield D E,Glazer A N,Falkowski P G.The evolution and future of Earth's nitrogen cycle.Science,2010,330: 192-196
[9]  2 Keddy P A.Wetland Ecology: Principles and Conservation.Cambridge: Cambridge University Press,2010
[10]  3 Davidson T A,Mackay A W,Wolski P,et al.Seasonal and spatial hydrological variability drives aquatic biodiversity in a flood-pulsed,sub-tropical wetland.Freshwater Biol,2012,57: 1253-1265
[11]  4 Yates C N,Wootton B C,Murphy S D.Performance assessment of arctic tundra municipal wastewater treatment wetlands through an arctic summer.Ecol Eng,2012,44: 160-173
[12]  5 Keddy P A,Fraser L H,Solomeshch A I,et al.Wet and wonderful: The world's largest wetlands are conservation priorities.Bioscience,2009,59: 39-51
[13]  6 Tilman D,Fargione J,Wolff B,et al.Forecasting agriculturally driven global environmental change.Science,2001,292: 281-284
[14]  7 秦伯强,高光,朱广伟,等.湖泊富营养化及其生态系统响应.科学通报,2013,58: 855-864
[15]  8 Gu B J,Ge Y,Ren Y,et al.Atmospheric reactive nitrogen in China: Sources,recent trends,and damage costs.Environ Sci Technol,2012,46: 9420-9427
[16]  13 Dere A L,Stehouwer R C,Aboukila E,et al.Nutrient leaching and soil retention in mined land reclaimed with stabilized manure.J Environ Qual,2012,41: 2001-2008
[17]  15 Saunders D L,Kalff J.Nitrogen retention in wetlands,lakes and rivers.Hydrobiologia,2001,443: 205-212
[18]  18 Storey R G,Fulthorpe R R,Williams D D.Perspectives and prediction on the microbial ecology of the hyporheic zone.Freshwater Biol,1999,41: 119-130
[19]  22 Salvato M,Borina M,Donib S,et al.Wetland plants,micro-organisms and enzymatic activities interrelations in treating N polluted water.Ecol Eng,2012,47: 36-43
[20]  23 Likens G E,Driscoll C T,Buso D C.Long-term effects of acid rain: Response and recovery of a forest ecosystem.Science,1996,272: 244-246
[21]  24 Galloway J N,Townsend A R,Erisman J W,et al.Transformation of the nitrogen cycle: Recent trends,questions,and potential solutions.Science,2008,320: 889-892
[22]  28 Fleckenstein J H,Krause S,Hannah D M,et al.Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics.Adv Water Resour,2010,33: 1291-1295
[23]  29 Robertson A L,Wood P J.Ecology of the hyporheic zone: Origins,current knowledge and future directions.Fundam Appl Limnol,Arch Hydrobiol,2010,176: 279-289
[24]  30 Cirmo C P,McDonnell J J.Linking the hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of temperate-forested catchments: A review.J Hydrol,1997,199: 88-120
[25]  40 Knox A K,Dahlgren R A,Tate K W,et al.Efficacy of natural wetlands to retain nutrient,sediment and microbial pollutants.J Environ Quality,2008,37: 1837-1846
[26]  43 Kettering J,Park J H,Lindner S,et al.N fluxes in an agricultural catchment under monsoon climate: A budget approach at different scales.Agr Ecosyst Environ,2012,161: 101-111
[27]  44 Ortiz-Zayas J R,Cuevas E,Mayol-Bracero O L,et al.Urban influences on the nitrogen cycle in Puerto Rico.Biogeochemistry,2006,79: 109-133
[28]  45 Howden N J K,Burt T P,Worrall F,et al.Nitrate concentrations and fluxes in the River Thames over 140 years (1868-2008): Are increases irreversible? Hydrol Process,2010,24: 2657-2662
[29]  46 Hanson G C,Groffman P M,Gold A J.Symptoms of nitrogen saturation in a riparian wetland.Ecol Appl,1994,4: 750-756
[30]  48 Morris J T.Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition.Annu Rev Ecol Syst,1991,22: 257-279
[31]  49 Yu W T,Jiang C M,Ma Q,et al.Observation of the nitrogen deposition in the lower Liaohe River Plain,Northeast China and assessing its ecological risk.Atmos Res,2011,101: 460-468
[32]  50 Winchester J W,Escalon L,Fu J M,et al.Atmospheric deposition and hydrogeologic flow of nitrogen in northern Florida watersheds.Geochim Cosmochim Acta,1995,59: 2215-2222
[33]  51 Elser J J,Andersen T,Baron J S,et al.Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition.Science,2009,326: 835-837
[34]  52 Holland E A,Dentener F J,Braswell B H,et al.Contemporary and pre-industrial global reactive nitrogen budgets.Biogeochemistry,1999,46: 7-43
[35]  54 Galloway J N,Dentener F J,Capone D G,et al.Nitrogen cycles: Past,present,and future.Biogeochemistry,2004,70: 153-226
[36]  58 Peoples M B,Herridge D F,Ladha J K.Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production.Plant Soil,1995,174: 3-28
[37]  59 Smil V.Nitrogen in crop production: An account of global flows.Glob Biogeochem Cycle,1999,13: 647-662
[38]  60 Buresh R J,Casselman M E,Patrick Jr W H.Nitrogen fixation in flooded soil systems,a review.Adv Agron,1980,33: 149-192
[39]  61 Vitousek P M,Cassman K,Cleveland C,et al.Towards an ecological understanding of biological nitrogen fixation.Biogeochemistry,2002,57: 1-45
[40]  62 Horne A J,Dillard J E,Fujita D K,et al.Nitrogen fixation in Clear Lake,California.II.Synoptic studies on the autumn Anabaena bloom.Limnol Oceanogr,1972,17: 693-703
[41]  63 Grimm N B,Petrone K C.Nitrogen fixation in a desert stream ecosystem.Biogeochemistry,1997,37: 33-61
[42]  64 Burt T P,Matchett L S,Goulding K W T,et al.Denitrification in riparian buffer zones: The role of floodplain hydrology.Hydrol Process,1999,13: 1451-1463
[43]  65 Knowles R.Denitrification.Microbiol Rev,1982,46: 43-70
[44]  76 Krause S,Tecklenburg C,Munz M,et al.Streambed nitrogen cycling beyond the hyporheic zone: Flow controls on horizontal patterns and depth distribution of nitrate and dissolved oxygen in the upwelling groundwater of a lowland river.J Geophys Res Biogeosci,2013,118: 54-67
[45]  77 Lansdown K,Trimmer M,Heppell C M,et al.Characterization of the key pathways of dissimilatory nitrate reduction and their response to complex organic substrates in hyporheic sediments.Limnol Oceanogr,2012,57: 387-400
[46]  79 Strous M,Fuerst J A,Kramer E H M,et al.Missing lithotroph identified as new planctomycete.Nature,1999,400: 446-449
[47]  81 Mulder A,Graaf A A,Robertson L A,et al.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor.FEMS Microbiol Ecol,1995,16: 177-184
[48]  82 Kuypers M M M,Sliekers A O,Lavik G,et al.Anaerobic ammonium oxidation by anammox bacteria in the Black Sea.Nature,2003,422: 608-611
[49]  83 Kuypers M M M,Lavik G,Thamdrup B.Anaerobic ammonium oxidation in the marine environment.In: Nerelin L N,ed.Past and Present Water Column Anoxia.Dordrecht: Springer,2006,64: 311-335
[50]  84 Zhu G,Jetten M S M,Kuschk P,et al.Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems.Appl Microbiol Biotech,2010,86: 1043-1055
[51]  85 Wang Z,Qi Y,Wang J,et al.Characteristics of aerobic and anaerobic ammonium-oxidizing bacteria in the hyporheic zone of a contaminated river.World J Microbiol Biotechnol,2012,28: 2801-2811
[52]  86 Zhu G,Wang S,Wang W,et al.Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces.Nat Geosci,2013,6: 103-107
[53]  87 Reddy K R,De Busk W F.Nutrient removal potential of selected aquatic macrophytes.J Environ Qual,1985,14: 459-462
[54]  92 Kang S,Kang H,Ko D,et al.Nitrogen removal from a riverine wetland: A field survey and simulation study of Phragmites japonica.Ecol Eng,2002,18: 467-475
[55]  93 Spoelstra J,Schiff S L,Semkina R G,et al.Nitrate attenuation in a small temperate wetland following forest harvest.Forest Ecol Manag,2010,259: 2333-2341
[56]  94 Vymazal J.Types of constructed wetlands for wastewater treatment: Their potential for nutrient removal.In: Vymazal J,ed.Transformations of Nutrients in Natural and Constructed Wetlands.Leiden: Backhuys Publishers,2001.1-93
[57]  95 Cosandey A C,Maitre V,Guenat C,et al.Patterns of nitrate attenuation in riparian wetlands.In: Nehring K W,Brauning S E,eds.Wetland Remediation,Vol II.Columbus: Battelle Press,2002.347-354
[58]  96 Bolke J K,Denver J M.Combined use of groundwater dating,chemical,and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds,Atlantic coastal plain,Maryland.Water Resour Res,1995,31: 2319-2339
[59]  97 Canfield D E,Glazer A N,Falkowski P G.The evolution and future of earth's nitrogen cycle.Science,2010,330: 192-196
[60]  102 Elser J J,Bracken M E S,Cleland E E,et al.Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater,marine and terrestrial ecosystems.Ecol Lett,2007,10: 1135-1142
[61]  103 Hunter W J.Accumulation of nitrite in denitrifying barriers when phosphate is limiting.J Contam Hydrol,2003,66: 79-91
[62]  114 Mitsch W J,Gosselin J G.Wetlands.New York: Van Nostrand Reinhold Company Inc,2000.89-125
[63]  115 Wang Z Y,Qi Y,Wang J,et al.Characteristics of aerobic and anaerobic ammonium-oxidizing bacteria in the hyporheic zone of a contaminated river.World J Microbiol Biotechnol,2012,28: 2801-2811
[64]  118 Leininger S,Urich T,Schloter M,et al.Archaea predominate among ammonia-oxidizing prokaryotes in soils.Nature,2006,442: 806-809.
[65]  119 Sahan E,Muyzer G.Diversity and spatio-temporal distribution of ammonia-oxidizing archaea and bacteria in sediments of the Westerschelde estuary.FEMS Microbiol Ecol,2008,64: 175-186
[66]  120 Amir N.Bioactive chemicals and biological-biochemical activities and their function in rhizosphere of wetland plants.Bot Rev,2000,66: 350-378
[67]  121 Marumoto T,Anderson J P E,Domsch L H.Decomposition of 14C- and 15N-labeled microbial cells in soil.Soil Biol Biochem,1982,14: 461-467
[68]  122 Febria C M,Beddoes P,Fulthorpe R R,et al.Bacterial community dynamics in the hyporheic zone of an intermittent stream.ISME J,2012,6: 1078-1088
[69]  123 Hoewyk D V,Groffman P M,Erik K,et al.Soil nitrogen dynamics in organic and mineral soil calcareous wetlands in eastern New York.Soil Sci Soc Am J,2000,64: 2168-2173
[70]  126 Crenshaw C L,Grimm N B,Zeglin L H,et al.Dissolved inorganic nitrogen dynamics in the hyporheic zone of reference and human- altered southwestern US streams.Fundam Appl Limnol,Arch Hydrobiol,2010,176: 391-405
[71]  130 Galloway J N,Cowling E B.Reactive nitrogen and the world: 200 years of change.Ambio,2002,31: 64-71
[72]  9 Townsend A R,Howarth R W,Bazzaz F A,et al.Human health effects of a changing global nitrogen cycle.Front Ecol Environ,2003,1: 240-246
[73]  10 Deegan L A,Johnson D S,Warren R S,et al.Coastal eutrophication as a driver of salt marsh loss.Nature,2012,490: 388-392
[74]  11 Hankin S L,Weilhoefer C L,Kaldy J E,et al.Sediment diatom species and community response to nitrogen addition in Oregon (USA) estuarine tidal wetlands.Wetland,2012,32: 1023-1031
[75]  12 Hochman Z,Carberry P S,Robertson M J,et al.Prospects for ecological intensification of Australian agriculture.Eur J Agron,2013,44: 109-123
[76]  14 Roley S S,Tank J L,Williams M A.Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream.J Geophys Res,2012,doi: 10.1029/2012JG001950
[77]  16 Ocampo C J,Oldham C E,Sivapalan M.Nitrate attenuation in agricultural catchments: Shifting balances between transport and reaction.Water Resour Res,2006,doi: 10.1029/2004WR003773
[78]  17 McHale M R,Cirmo C P,Mitchell M J,et al.Wetland nitrogen dynamics in an Adirondack forested watershed.Hydrol Process,2004,18: 1853-1870
[79]  19 Triska F J,Duff J H,Avanzino R J.Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel- bottom stream: Examining terrestrial-aquatic link-ages.Freshwater Biol,1993,29: 259-274
[80]  20 Triska F J,Duff J H,Avanzino R J.The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface.Hydrobiologia,1993,251: 167-184
[81]  21 Gibert J,Standford J A,Dole-Olivier M J,et al.Basic attributes of groundwater ecosystem and prospects for research.In: Gibert J,Danielopol D L,Standford J A,eds.Groundwater Ecology.San Diego: Academic Press,1994
[82]  25 古励,刘冰,于鑫.受污染水源饮用水处理工艺中的有机氮类化合物.科学通报,2009,55: 2651-2654
[83]  26 Hedin L O,Von Fischer J C,Ostrom N E,et al.Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces.Ecology,1998,79: 684-703
[84]  27 Sophocleous M.Interactions between groundwater and surface water: The state of the science.Hydrogeol J,2002,10: 52-67
[85]  31 Zarnetske J P,Haggerty R,Wondzell S M,et al.Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone.J Geophys Res,2011,doi: 10.1029/2010JG001356
[86]  32 White D S.Perspectives on defining and delineating hyporheic zones.J N Am Benthol Soc,1993,12: 61-69
[87]  33 Valett H M,Hakenkamp C C,Boulton A J.Perspectives on the hyporheic zone: Integrating hydrology and biology Introduction.J N Am Benthol Soc,1993,12: 40-43
[88]  34 Boulton A J,Foster J G.Effects of buried leaf litter and vertical hydrologic exchange on hyporheic water chemistry and fauna in a gravel-bed river in northern New South Wales,Australia.Freshwater Biol,1998,40: 229-243
[89]  35 Stubbington R,Greenwood A M,Wood P J,et al.The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes.Hydrobiologia,2009,230: 299-312
[90]  36 Wondzell S M.The role of the hyporheic zone across stream network.Hydrol Process,2011,25: 3525-3532
[91]  37 Krause S,Hannah D M,Fleckenstein J H.Hyporheic hydrology: Interactions at the groundwater-surface water interface.Hydrol Process,2009,23: 2103-2107
[92]  38 范伟,章光新,李然然.湿地地表水-地下水交互作用研究综述.地球科学进展,2012,27: 413-423
[93]  39 Falkowski P G.Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean.Nature,1997,387: 272-275
[94]  41 席宏正,康文星.洞庭湖湿地总氮总磷输入与滞留净化效应研究.灌溉排水学报,2008,27: 106-109
[95]  42 Howden N J K,Burt T P,Worrall F,et al.Nitrate pollution in intensively farmed regions: What are the prospects for sustaining high- quality groundwater? Water Resour Res,2011,doi: 10.1029/2011WR010843
[96]  47 Tessier J T,Raynal D J.Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.J Appl Ecol,2003,40: 523-534
[97]  53 Gruber N,Galloway J N.An earth-system perspective of the global nitrogen cycle.Nature,2008,451: 293-296
[98]  55 Lü C,Tian H.Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data.J Geophys Res: Atmos,2007,doi: 10.1029/2006JD007990
[99]  56 刘学军,张福锁.环境养分及其在生态系统养分资源管理中的作用——以大气氮沉降为例.干旱区研究,2009,26: 306-311
[100]  57 张修峰.上海地区大气氮湿沉降及其对湿地水环境的影响.应用生态学报,2006,17: 1099-1102
[101]  66 Jansson M,Andersson R,Berggren H,et al.Wetlands and lakes as nitrogen traps.Ambio,1994,23: 320-325
[102]  67 Fisher J,Acreman M C.Wetland nutrient removal: A review of the evidence.Hydrol Earth Syst Sci,2004,8: 673-685
[103]  68 Sirivedhin T,Gray K A.Factors affecting denitrification rates in experimental wetlands: Field and laboratory studies.Ecol Eng,2006,26: 167-181
[104]  69 Robertson W D,Russell B M,Cherry J A.Attenuation of nitrate in aquitard sediments of southern Ontario.J Hydrol,1996,180: 267-281
[105]  70 Stelzer R,Bartsch L A,Richardson W B,et al.The dark side of the hyporheic zone: Depth profiles of nitrogen and its processing in stream sediments.Freshwater Biol,2011,56: 2021-2033
[106]  71 Beauchamp E G,Trevors J T,Paul J W.Carbon sources for bacterial denitrification.Adv Soil Sci,1989,10: 113-142
[107]  72 Rivett M O,Buss S R,Morgan P,et al.Nitrate attenuation in groundwater: A review of biogeochemical controlling processes.Water Res,2008,42: 4215-4232
[108]  73 Korom S F.Natural denitrification in the saturated zone: A review.Water Resour Res,1992,28: 1657-1668
[109]  74 Tesoriero A J,Liebscher H,Cox S E.Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths.Water Resour Res,2000,36: 1545-1559
[110]  75 Pinay G O,Keefe T C,Edwards R T,et al.Nitrate removal in the hyporheic zone of a salmon river in Alaska.River Res Applic,2009,25: 367-375
[111]  78 Arrigo R A.Marine microorganisms and global nutrient cycles.Nature,2005,437: 349-355
[112]  80 You J,Das A,Dolan E M,et al.Ammonia-oxidizing archaea involved in nitrogen removal.Water Res,2009,43: 1801-1809
[113]  88 Martin J F,Reddy K R.Interaction and spatial distribution of wetland nitrogen processes.Ecol Model,1997,44: 93-118
[114]  89 Zhang C B,Liu W L,Wang J,et al.Effects of monocot and dicot types and species richness in mesocosm constructed wetlands on removal of pollutants from wastewater.Bioresource Technol,2011,102: 10260-10265
[115]  90 Romero J A,Comin F A,Garcia C.Restored wetlands as filters to remove nitrogen.Chemosphere,1999,39: 323-332
[116]  91 Billore S K,Singh N,Sharma J K,et al.Horizontal subsurface flow gravel bed constructed wetland with Phragmites karka in Central India.Water Sci Tech,1999,40: 163-171
[117]  98 Smith J W N,Lerner D N.Geomorphologic control on pollutant retardation at the groundwater-surface water interface.Hydrol Process,2008,22: 4679-4694
[118]  99 Salvato M,Borin M,Donib S,et al.Wetland plants,micro-organisms and enzymatic activities interrelations in treating N polluted water.Ecol Eng,2012,47: 36-43
[119]  100 Groffman P M,Crawford M K.Denitrification potential in urban riparian zones.J Environ Qual,2003,32: 1144-1149
[120]  101 Fu J X,Jiang X,Zhao J.The influence of inorganic carbon on anaerobic ammonia oxidation.Appl Mech Mater,2013,275-277: 2226-2229
[121]  104 程凤娴,曹桂芹,王秀荣,等.华南酸性低磷土壤中大豆根瘤菌高效株系的发现及应用.科学通报,2008,53: 2903-2910
[122]  105 Sa?udo-Wilhelmy S A,Kustka A B,Gobler C J,et al.Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean.Nature,2001,411: 66-69
[123]  106 Zhu W X,Ehrenfelc J G.Nitrogen mineralization and nitrification in suburban and undeveloped Atlantic White Cedar wetlands.J Environ Qual,1999,28: 523-529
[124]  107 Rust C M,Aelion C M,Flora J R V.Control of pH during denitrification in sub-surface sediment microcosms using encapsulated phosphate buffer.Water Res,2000,34: 1447-1454
[125]  108 Brady N C,Weil R R.The Nature and Properties of Soils.13th ed.New Jersey: Prentice Hall,2002
[126]  109 Bremner J M,Shaw K.Denitrification in soil II.Factors affecting denitrification.J Agr Sci,1958,51: 40-52
[127]  110 Kumar A R,Riyazuddin P.Seasonal variation of redox species and redox potentials in shallow groundwater: A comparison of measured and calculated redox potentials.J Hydrol,2012,444-445: 187-198
[128]  111 Fisher S G,Grimm N B,Marti E,et al.Material spiraling in stream corridors: A telescoping ecosystem model.Ecosystems,1998,1: 19-34
[129]  112 Mayer P M,Groffman P M,Striz E A,et al.Nitrogen dynamics at the groundwater-surface water interface of a degraded urban stream.J Environ Qual,2010,39: 810-823
[130]  113 Lie E,Welander T.Influence of dissolved oxygen and oxidation-reduction potential on the denitrification rate of activated sludge.Water Sci Tech,1994,30: 91-100
[131]  116 Juma N G,Paul E A.Mineralizable soil nitrogen: Amounts and extractability ratios.Soil Sci Soc Am J,1984,48: 76-80
[132]  117 Strous M,Fuerst J A,Kramer E H M,et al.Missing lithotroph identified as new planctomycete.Nature,1999,400: 446-449
[133]  124 Galloway J N,Schlesing W H,Levy H,et al.Nitrogen fixation: Anthropogenic enhancement-environmental response.Glob Biogeochem Cycle,1995,9: 235-252
[134]  125 Fields S.Global nitrogen: Cycling out of control.Environ Health Perspect,2004,112: A556-A563
[135]  127 Groffman P M,Gold A J,Addy K.Nitrous oxide production in riparian zones and its importance to national emission inventories.Chemosphere,2000,2: 291-299
[136]  128 Groffman P M,Law N L,Belt K T,et al.Nitrogen fluxes and retention in urban watershed ecosystems.Ecosystems,2004,7: 393-403
[137]  129 Howarth R W,Boyer E W,Pabich W J,et al.Nitrogen use in the United States from 1961-2000 and potential future trends.AMBIO: J Human Environ,2002,31: 88-96
[138]  131 Smil V.Enriching the Earth: Fritz Haber,Carl Bosch,and the Transformation of World Food Production.Cambridge (MA): MIT Press,2004
[139]  132 Aneja V P,Blunden J,Roelle P A,et al.Workshop on agricultural air quality: State of the science.Atmos Environ,2008,42: 3195-3208
[140]  133 Lin B L,Sakoda A,Shibasaki R,et al.A modelling approach to global nitrate leaching caused by anthropogenic fertilization.Water Res,2001,35: 1961-1968
[141]  134 Vitousek P M,Aber J D,Howarth R W,et al.Human alteration of the global nitrogen cycle: Causes and consequences.Ecol Appl,1997,7: 737-750
[142]  135 Howarth R W,Swaney D P,Boyer E W,et al.The influence of climate on average nitrogen export from large watersheds in the Northeastern United States.Biogeochemistry,2006,79: 163-186
[143]  136 Schlesinger W H.On the fate of anthropogenic nitrogen.Proc Natl Acad Sci USA,2008,106: 203-208
[144]  144 Nogaro G,Datry T,Mermillod-Blondin F,et al.Influence of streambed sediment clogging on microbial processes in the hyporheic zone.Freshwater Biol,2010,55: 1288-1302
[145]  145 West J M,Chilton P J.Aquifers as environments for microbiological activity.Q J Eng Geol,1997,30: 149-154

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133