全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

氨硼烷:一种高性能化学储氢材料

DOI: 10.1360/972013-1221, PP. 1823-1837

Keywords: 氨硼烷,储氢材料,释氢,催化

Full-Text   Cite this paper   Add to My Lib

Abstract:

世界范围内能源危机,气候和环境问题日渐凸显,亟需寻找合适的可替代能源.在众多新型能源中,氢能作为一种储量丰富、燃烧无污染、能量密度高的绿色能源,可以为燃料电池提供高效稳定的动力来源而引起广泛关注,如何将其安全高效的储存是氢气应用于车载燃料电池的技术瓶颈.硼氮氢类化合物由于具有储氢密度高、释氢条件温和等优点成为学术界关注热点.氨硼烷(ammoniaborane,AB)为代表性化合物,其含氢量高(19.6%,质量百分比)、热稳定性适中、释氢温度低,被认为是最具潜力的新型储氢材料之一.氨硼烷中的一个正氢被金属原子取代后形成的金属氨硼烷(metalamidoborane,MAB),可以有效抑制硼吖嗪的生成.研究者们对这类储氢化合物进行了大量的理论和实验研究,改进其性能,降低释氢温度,缩短诱导期,减少挥发性有害气体硼吖嗪、氨气、乙硼烷的生成.本文从氨硼烷结构中特殊的双氢键入手,总结了氨硼烷的合成方法,并详细综述了添加剂对氨硼烷和金属氨硼烷释氢性能的影响,介绍了氨硼烷的再生以及在其他方面的研究进展,最后展望了氨硼烷的研究前景.

References

[1]  2 Sanyal U, Demirci U B, Jagirdar B R, et al. Hydrolysis of ammonia borane as a hydrogen source:Fundamental issues and potential solutions towards implementation. ChemSusChem, 2011, 4:1731-1739
[2]  3 孙艳, 周理, 苏伟, 等. 单分子层吸附机理对储氢材料研究的冲击. 科学通报, 2007, 52:361-365
[3]  4 朱永峰, 何玉凤, 王荣民, 等. 白蛋白锌卟啉结合体光解水产氢性能. 科学通报, 2011, 56:1360-1366
[4]  5 Marder T B. Will we soon be fueling our automobiles with ammonia-borane? Angew Chem Int Ed, 2007, 46:8116-8118
[5]  6 Peng B, Chen J. Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coord Chem Rev, 2009,253:2805-2813
[6]  14 Wang P. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage. Dalton Trans, 2012, 41:4296-4302
[7]  15 Staubitz A, Robertson A P M, Manners I. Ammonia-borane and related compounds as dihydrogen sources. Chem Rev, 2010, 110:4079-4124
[8]  20 黄仁忠, 杨文静, 刘柳, 等. 氨硼烷基化学储氢材料. 沈阳师范大学学报(自然科学版), 2011, 29:395-398
[9]  21 杨明, 王圣平, 张运丰, 等. 储氢材料的研究现状与发展趋势. 硅酸盐学报, 2011, 39:1053-1060
[10]  22 陶占良, 彭博, 梁静, 等. 高密度储氢材料研究进展. 中国材料进展, 2009, 28:26-40
[11]  25 刘超仁, 胡青苗, 王平. 氨硼烷低温和室温结构的第一性原理. 材料研究学报, 2011, 25:13-18
[12]  26 Hoon C F, Reynhardt E C. Molecular dynamics and structures of amine boranes of the type R3N·BH3. I. X-Ray investigation of H3N·BH3 at 295 K and 110 K. J Phys C:Solid State Phys, 1983, 16:6129-6136
[13]  27 Bowden M E, Gainsford G J, Robinson W T. Room-temperature structure of ammonia borane. Aust J Chem, 2007, 60:149-153
[14]  29 Hess N J, Schenter G K, Hartman M R, et al. Neutron powder diffraction and molecular simulation study of the structural evolution of ammonia borane from 15 to 340 K. J Phys Chem A, 2009, 113:5723-5735
[15]  30 Najiba S, Chen J, Drozd V, et al. Ammonia borane at low temperature down to 90 K and high pressure up to 15 GPa. Int J Hydrog Energy, 2013,38:4628-4635
[16]  31 Ang L, Yang S. In situ high-pressure and low-temperature study of ammonia borane by raman spectroscopy. J Phys Chem C, 2012, 116:2123-2131
[17]  33 Crabtree R H. A new type of hydrogen bond. Science, 1998, 282:2000-2001
[18]  34 Heinekey D M, Oldham W J. Coordination chemistry of dihydrogen. Chem Rev, 1993, 93:913-926
[19]  35 Vladimir I B. Dihydrogen Bond:Principles, Experiments, and Applications. New Jersey:Wiley-Interscience, 2008
[20]  38 Shore S G, Parry R W. Chemical evidence for the structure of the “diammoniate of diborane”. II. The preparation of ammonia-borane. J Am Chem Soc, 1958, 80:8-12
[21]  39 Ramachandran P V, Gagare P D. Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg Chem, 2007, 46:7810-7817
[22]  40 Heldebrant D J, Karkamkar A, Linehan J C, et al. Synthesis of ammonia borane for hydrogen storage applications. Energy Environ Sci, 2008, 1:156-160
[23]  41 邹少爽, 陶占良, 陈军. 氨基络合物制备氨硼烷及放氢性能研究. 化学学报, 2011, 69:2117-2122
[24]  42 Shore S G, Boeddeker K W. Large scale synthesis of H2B(NH3)2+BH4-and H3NBH3. Inorg Chem, 1964, 3:914-915
[25]  45 Lingam H K, Chen X, Zhao J C, et al. A convenient synthesis and a NMR study of the diammoniate of diborane. Chem Eur J, 2012, 18:3490-3492
[26]  47 Mayer E. Conversion of dihydridodiammineboron(III) borohydride to ammonia-borane without hydrogen evolution. Inorg Chem, 1973, 12:1954-1955
[27]  48 时蕾, 刘迎迎, 毛润泽, 等. 氨基硼烷化合物的合成及应用研究进展. 化学研究与应用, 2012, 24:1020-1029
[28]  50 Wang P. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage. Dalton Trans, 2012, 41:4296-4302
[29]  51 Bowden M, Autrey T, Brown I, et al. The thermal decomposition of ammonia borane:A potential hydrogen storage material. Curr Appl Phys,2008, 8:498-500
[30]  55 Shaw W J L, John C S, Nathaniel K. In situ multinuclear NMR spectroscopic studies of the thermal decomposition of ammonia borane in solution. Angew Chem Int Ed, 2008, 47:7493-7496
[31]  56 Stowe A C, Shaw W J, Linehan J C, et al. In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane:Mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material. Phys Chem Chem Phys, 2007, 9:1831-1836
[32]  57 Pons V, Baker R T, Szymczak N K, et al. Coordination of aminoborane, NH2BH2, dictates selectivity and extent of H2 release in metal-catalysed ammonia borane dehydrogenation. Chem Commun, 2008, (48):6597-6599
[33]  58 Wolf G, Baumann J, Baitalow F, et al. Calorimetric process monitoring of thermal decomposition of B-N-H compounds. Thermochim Acta,2000, 343:19-25
[34]  62 Toche F, Chiriac R, Demirci U B, et al. Ammonia borane thermolytic decomposition in the presence of metal (II) chlorides. Int J Hydrog Energy, 2012, 37:6749-6755
[35]  64 Li Z, Zhu G, Lu G, et al. Ammonia borane confined by a metal-organic framework for chemical hydrogen storage:Enhancing kinetics and eliminating ammonia. J Am Chem Soc, 2010, 132:1490-1491
[36]  67 Li Y, Song P, Zheng J, et al. Promoted H2 generation from NH3BH3 thermal dehydrogenation catalyzed by metal-organic framework based catalysts. Chem Eur J, 2010, 16:10887-10892
[37]  12048-1204972 Chandra M, Xu Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J Power Sources, 2007, 168:135-142
[38]  74 Umegaki T, Yan J, Zhang X, et al. Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy, 2009, 34:3816-3822
[39]  75 Umegaki T, Yan J, Zhang X, et al. Co-SiO2 nanosphere-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J Power Sources, 2010, 195:8209-8214
[40]  76 Yamada Y, Yano K, Xu Q, et al. Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis. J Phys Chem C, 2010, 114:16456-16462
[41]  77 Aranishi K, Jiang H L, Akita T, et al. One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core-shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Nano Res, 2011, 4:1233-1241
[42]  78 Jiang H L, Xu Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal Today, 2011, 170:56-63
[43]  79 Li P Z, Aijaz A, Xu Q. Highly dispersed surfactant-free nickel nanoparticles and their remarkable catalytic activity in the hydrolysis of ammonia borane for hydrogen generation. Angew Chem Int Ed, 2012, 51:6753-6756
[44]  80 Liu C, Wu Y, Chou C, et al. Hydrogen generated from hydrolysis of ammonia borane using cobalt and ruthenium based catalysts. Int J Hydrog Energy, 2012, 37:2950-2959
[45]  81 Yang L, Luo W, Cheng G. Graphene supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. ACS Appl Mater Interfaces, 2013, 5:8231-8240
[46]  86 Qiu F, Li L, Liu G, et al. In situ synthesized Fe-Co/C nano-alloys as catalysts for the hydrolysis of ammonia borane. Int J Hydrog Energy,2013, 38:3241-3249
[47]  92 Mohajeri N, T-Raissi A, Adebiyi O. Hydrolytic cleavage of ammonia borane complex for hydrogen production. J Power Sources, 2007,167:482-485
[48]  93 Cheng F, Ma H, Li Y, et al. Ni1-xPtx (x = 0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane. Inorg Chem, 2007,46:788-794
[49]  94 Basu S, Brockman A, Gagare P, et al. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis. J Power Sources, 2009, 188:238-243
[50]  95 Yao C F, Zhuang L, Cao Y L, et al. Hydrogen release from hydrolysis of borazane on Pt-and Ni-based alloy catalysts. Int J Hydrog Energy,2008, 33:2462-2467
[51]  96 Yang X, Cheng F, Liang J, et al. PtxNi(1-x) nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Int J Hydrog Energy, 2009, 34:8785-8791
[52]  102 Metin ?, Sahin S, ?zkar S. Water-soluble poly(4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium(0) and palladium(0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrog Energy, 2009, 34:6304-6313
[53]  103 Metin ?, ?zkar S. Water soluble nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid):Highly active, durable and cost effective catalysts in hydrogen generation from the hydrolysis of ammonia borane. Int J Hydrog Energy, 2011, 36:1424-1432
[54]  104 Himmelberger D W, Alden L R, Bluhm M E, et al. Ammonia borane hydrogen release in ionic liquids. Inorg Chem, 2009, 48:9883-9889
[55]  108 Chua Y S, Chen P, Wu G, et al. Development of amidoboranes for hydrogen storage. Chem Commun, 2011, 47:5116-5129
[56]  109 Wang K, Zhang J G, Man T T, et al. Recent process and development of metal aminoborane. Chem Asian J, 2013, 8:1076-1089
[57]  110 Xiong Z, Yong C K, Wu G, et al. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater, 2008, 7:138-141
[58]  131 He T, Wang J, Chen Z, et al. Metathesis of alkali-metal amidoborane and FeCl3 in THF. J Mater Chem, 2012, 22:7478-7483
[59]  132 Summerscales O T, Gordon J C. Regeneration of ammonia borane from spent fuel materials. Dalton Trans, 2013, 42:10075-10084
[60]  133 Sutton A D, Burrell A K, Dixon D A, et al. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science, 2011, 331:1426-1429
[61]  134 Reller C, Mertens F O R L. A self-contained regeneration scheme for spent ammonia borane based on the catalytic hydrodechlorination of BCl3. Angew Chem Int Ed, 2012, 51:11731-11735
[62]  135 Ramachandran P V, Gagare P D, Sakavuyi K. Reductive amination using ammonia borane. Tetrahedron Lett, 2010, 51:3167-3169
[63]  136 Ménard G, Stephen D W. Room temperature reduction of CO2 to methanol by Al-base frustrated lewis parts and ammonia borane. J Am Chem Soc, 2010, 132:1796-1797
[64]  137 Zhong B, Huang X, Wen G, et al. Large-scale fabrication of boron nitride nanotubes via a facile chemical vapor reaction route and their cathodoluminescence properties. Nanoscale Res Lett, 2011, 6:36-44
[65]  138 Hamilton E J M, Dolan S E, Mann C M, et al. Preparation of amorphous boron nitride and its conversion to a turbostratic, tubular form. Science,1993, 260:659-661
[66]  139 Wang Y, Yamamoto Y, Kiyono H, et al. Effect of ambient gas and temperature on crystallization of boron nitride spheres prepared by vapor phase pyrolysis of ammonia borane. J Am Ceram Soc, 2009, 92:787-792
[67]  140 Kim S K, Cho H, Kim M, et al. Efficient catalytic conversion of ammonia borane to borazine and its use for hexagonal boron nitride (white graphene). J Mater Chem A, 2013, 1:1976-1981
[68]  141 Chen X, Zhao J C, Shore S G. Facile synthesis of aminodiborane and inorganic butane analogue NH3BH2NH2BH3. J Am Chem Soc, 2010,132:10658-10659
[69]  142 Chen X, Gallucci J, Campana C, et al. Anti and gauche conformers of an inorganic butane analogue, NH3BH2NH2BH3. Chem Commun, 2012,48:7943-7945
[70]  1 Ki-Joon J, Hoi R M, Anne M R, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater, 2011, 10:286-290
[71]  7 Durbin D J, Malardier-Jugroot C. Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrog Energy, 2013,38:14595-14617
[72]  8 Huang Z, Autrey T. Boron-nitrogen-hydrogen (BNH) compounds:Recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energy Environ Sci, 2012, 5:9257-9268
[73]  9 Umegaki T, Yan J M, Zhang X, et al. Boron-and nitrogen-based chemical hydrogen storage materials. Int J Hydrog Energy, 2009, 34:2303-2311
[74]  10 Hamilton C W, Baker R T, Staubitz A, et al. B-N compounds for chemical hydrogen storage. Chem Soc Rev, 2009, 38:279-293
[75]  11 Yoon C W, Carroll P J, Sneddon L G. Ammonia triborane:A new synthesis, structural determinations, and hydrolytic hydrogen-release properties. J Am Chem Soc, 2009, 131:855-864
[76]  12 Zheng X, Wu G, He T, et al. Improved hydrogen desorption properties of Co-doped Li2BNH6. Chin Sci Bull, 2011, 56:2481-2485
[77]  13 Carboni B, Monnier L. Recent developments in the chemistry of amine-and phosphine-boranes. Tetrahedron, 1999, 55:1197-1248
[78]  16 Peng B, Chen J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy Environ Sci, 2008, 1:479-483
[79]  17 邹勇进, 向翠丽, 邱树君, 等. 纳米限域的储氢材料. 化学进展, 2013, 25:115-121
[80]  18 张英锋, 申树芳, 马子川, 等. 硼烷及其衍生物的研究进展. 化学教学, 2012, 11:67-71
[81]  19 张立贤, 宋莉芳, 姜春红, 等. 新型储氢材料及其热力学与动力学. 中国科学:化学, 2010, 40:1243-1252
[82]  23 汪连城. 高压下硫化氢和氨硼烷结构和动力学性质的从头算分子动力学研究. 博士学位论文. 长春:吉林大学, 2010
[83]  24 Shore S G, Parry R W. The crystalline compound ammonia-borane,1H3NBH3. J Am Chem Soc, 1955, 77:6084-6085
[84]  28 Klooster W T, Koetzle T F, Siegbahn P E M, et al. Study of the N-H…H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. J Am Chem Soc, 1999, 121:6337-6343
[85]  32 Najiba S, Chen J, Drozd V, et al. Tetragonal to orthorhombic phase transition of ammonia borane at low temperature and high pressure. J Appl Phys, 2012, 111:112618
[86]  36 Chen X, Zhao J C, Shore S G. The roles of dihydrogen bonds in amine borane chemistry. Accounts Chem Res, 2013, 46:2666-2675
[87]  37 Wolstenholme D J, Traboulsee K T, Hua Y, et al. Thermal desorption of hydrogen from ammonia borane:Unexpected role of homopolar B-H…H-B interactions. Chem Commun, 2012, 48:2597-2599
[88]  43 Adams R M, Beres J, Dodds A, et al. Dimethyl sulfide-borane as a borane carrier. Inorg Chem, 1971, 10:2072-2074
[89]  44 Chen X, Bao X, Zhao J C, et al. Experimental and computational study of the formation mechanism of the diammoniate of diborane:The role of dihydrogen bonds. J Am Chem Soc, 2011, 133:14172-14175
[90]  46 Chen X, Bao X, Billet B, et al. Large-scale and facile preparation of pure ammonia borane through displacement reactions. Chem Eur J, 2012,18:11994-11999
[91]  49 Baitalow F, Baumann J, Wolf G, et al. Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods. Thermochim Acta, 2002, 391:159-168
[92]  52 Al-Kukhun A, Hwang H T, Varma A. Mechanistic studies of ammonia borane dehydrogenation. Int J Hydrog Energy, 2013, 38:169-179
[93]  53 Hu M G, Geanangel R A, Wendlandt W W. The thermal decomposition of ammonia borane. Thermochim Acta, 1978, 23:249-255
[94]  54 Bowden M, Autrey T. Characterization and mechanistic studies of the dehydrogenation of NHxBHx materials. Curr Opin Solid State Mater Sci,2011, 15:73-79
[95]  59 He T, Xiong Z, Wu G, et al. Nanosized Co-and Ni-catalyzed ammonia borane for hydrogen storage. Chem Mater, 2009, 21:2315-2318
[96]  60 Zhang J, He T, Liu L, et al. Effects of graphitic carbon nitride on the dehydrogenation of ammonia borane. Chin J Catal, 2013, 34:1303-1311
[97]  61 Chiriac R, Toche F, Demirci U B, et al. Ammonia borane decomposition in the presence of cobalt halides. Int J Hydrog Energy, 2011, 36:12955-12964
[98]  63 Neiner D, Luedtke A, Karkamkar A, et al. Decomposition pathway of ammonia borane on the surface of nano-BN. J Phys Chem C, 2010,114:13935-13941
[99]  65 Si X, Sun L, Xu F, et al. Improved hydrogen desorption properties of ammonia borane by Ni-modified metal-organic frameworks. Int J Hydrog Energy, 2011, 36:6698-6704
[100]  66 Gao L, Li C Y, Yung H, et al. A functionalized MIL-101(Cr) metal-organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chem Commun, 2013, 49:10629-10631
[101]  68 Gutowska A, Li L, Shin Y, et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed,2005, 44:3578-3582
[102]  69 Sepehri S, Garcia B B, Cao G. Tuning dehydrogenation temperature of carbon-ammonia borane nanocomposites. J Mater Chem, 2008,18:4034-4037
[103]  70 Kang X, Fang Z, Kong L, et al. Ammonia borane destabilized by lithium hydride:An advanced on-board hydrogen storage material. Adv Mater, 2008, 20:2756-2759
[104]  71 Denny M C, Pons V, Hebden T J, et al. Efficient catalysis of ammonia borane dehydrogenation. J Am Chem Soc, 2006, 128:
[105]  73 Yan J M, Zhang X B, Han S, et al. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew Chem Int Ed, 2008, 47:2287-2289
[106]  82 Nelson D J, Truscott B J, Egbert J D, et al. Exploring the limits of catalytic ammonia-borane dehydrogenation using a bis(N-heterocyclic carbene) iridium(III) complex. Organometallics, 2013, 32:3769-3772
[107]  83 Zahmakiran M, ?zkar S. Transition metal nanoparticles in catalysis for the hydrogen generation from the hydrolysis of ammonia-borane. Top Catal, 2013, 56:1171-1183
[108]  84 Qiu F, Li L, Liu G, et al. Synthesis of Fe0.3Co0.7/rGO nanoparticles as a high performance catalyst for the hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy, 2013, 38:7291-7297
[109]  85 Cao N, Luo W, Cheng G. One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy, 2013, 38:11964-11972
[110]  87 Figen A K. Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co-B, Ni-B, Cu-B) under different hydrolysis conditions. Int J Hydrog Energy, 2013, 38:9186-9197
[111]  88 Fernandes R, Patel N, Paris A, et al. Improved H2 production rate by hydrolysis of ammonia borane using quaternary alloy catalysts. Int J Hydrog Energy, 2013, 38:3313-3322
[112]  89 Rakap M, Kalu E E, ?zkar S. Hydrogen generation from hydrolysis of ammonia-borane using Pd-PVB-TiO2 and Co-Ni-P/Pd-TiO2 under stirred conditions. J Power Sources, 2012, 210:184-190
[113]  90 Rachiero G P, Demirci U B, Miele P. Facile synthesis by polyol method of a ruthenium catalyst supported on gamma-Al2O2 for hydrolytic dehydrogenation of ammonia borane. Catal Today, 2011, 170:85-92
[114]  91 Xu Q, Chandra M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J Power Sources, 2006,163:364-370
[115]  97 Yang X, Cheng F, Liang J, et al. Carbon-supported Ni(1-x)@Pt(x)(x=0.32, 0.43, 0.60, 0.67, and 0.80) core-shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Int J Hydrog Energy, 2011, 36:1984-1990
[116]  98 Zahmak?ran M, ?zkar S. Zeolite framework stabilized rhodium(0) nanoclusters catalyst for the hydrolysis of ammonia-borane in air:Outstanding catalytic activity, reusability and lifetime. Appl Catal B, 2009, 89:104-110
[117]  99 Metin ?, ?zkar S. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt(0) nanoclusters catalyst. Energy Fuels, 2009, 23:3517-3526
[118]  100 Durap F, Zahmak?ran M, ?zkar S. Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane:High activity and long lifetime. Int J Hydrog Energy, 2009, 34:7223-7230
[119]  101 Rakap M, ?zkar S. Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. Int J Hydrog Energy, 2010, 35:1305-1312
[120]  105 Wright W R H, Berkeley E R, Alden L R, et al. Transition metal catalysed ammonia-borane dehydrogenation in ionic liquids. Chem Commun, 2011, 47:3177-3179
[121]  106 Himmelberger D W, Yoon C W, Bluhm M E, et al. Base-promoted ammonia borane hydrogen-release. J Am Chem Soc, 2009, 131:14101-14110
[122]  107 Stephens F H, Baker R T, Matus M H, et al. Acid initiation of ammonia-borane dehydrogenation for hydrogen storage. Angew Chem Int Ed, 2007, 46:5746-5749
[123]  111 Wu H, Zhou W, Yildirim T. Alkali and alkaline-earth metal amidoboranes:Structure, crystal chemistry, and hydrogen storage properties. J Am Chem Soc, 2008, 130:14834-14839
[124]  112 Wu C, Wu G, Xiong Z, et al. LiNH2BH3·NH3BH3:Structure and hydrogen storage properties. Chem Mater, 2009, 22:3-5
[125]  113 Xia G, Yu X, Guo Y, at al. Amminelithium amidoborane Li(NH3)NH2BH3:A new coordination compound with favorable dehydrogenation characteristics. Chem Eur J, 2010, 16:3763-3769
[126]  114 Xiong Z, Wu G, Chua Y S, et al. Synthesis of sodium amidoborane (NaNH2BH3) for hydrogen production. Energy Environ Sci, 2008, 1:360-363
[127]  115 Diyabalanage H V K, Nakagawa T, Shrestha R P, et al. Potassium(I) amidotrihydroborate:Structure and hydrogen release. J Am Chem Soc,2010, 132:11836-11837
[128]  116 Chua Y S, Wu G, Xiong Z, et al. Synthesis, structure and dehydrogenation of magnesium amidoborane monoammoniate. Chem Commun, 2010,46:5752-5754
[129]  117 Diyabalanage H V K, Shrestha R P, Semelsberger T A, et al. Calcium amidotrihydroborate:A hydrogen storage material. Angew Chem Int Ed,2007, 46:8995-8997
[130]  118 Chua Y S, Wu G, Xiong Z, et al. Calcium amidoborane ammoniate—synthesis, structure, and hydrogen storage properties. Chem Mater, 2009,21:4899-4904
[131]  119 Zhang Q, Tang C, Fang C, et al. Synthesis, crystal structure, and thermal decomposition of strontium amidoborane. J Phys Chem C, 2010, 114:1709-1714
[132]  120 Genova R V, Fijalkowski K J, Budzianowski A, et al. Towards Y(NH2BH3)3:Probing hydrogen storage properties of YX3/MNH2BH3 (X = F, Cl; M = Li, Na) and YHx-3/NH3BH3 composites. J Alloy Compd, 2010, 499:144-148
[133]  121 Kang X, Luo J, Zhang Q, et al. Combined formation and decomposition of dual-metal amidoborane NaMg(NH2BH3)3 for high-performance hydrogen storage. Dalton Trans, 2011, 40:3799-3801
[134]  122 Wu H, Zhou W, Pinkerton F E, et al. Sodium magnesium amidoborane:The first mixed-metal amidoborane. Chem Commun, 2011, 47:4102-4104
[135]  123 Chua Y S, Li W, Wu G, et al. From exothermic to endothermic dehydrogenation-interaction of monoammoniate of magnesium amidoborane and metal hydrides. Chem Mater, 2012, 24:3574-3581
[136]  124 Fijalkowski K J, Genova R V, Filinchuk Y, et al. Na[Li[NH2BH3)-the first mixed-cation amidoborane with unusual crystal structure. Dalton Trans, 2011, 40:4407-4413
[137]  125 Xia G, Tan Y, Chen X, et al. Mixed-metal (Li, Al) amidoborane:Synthesis and enhanced hydrogen storage properties. J Mater Chem, 2013, 1:1810-1820
[138]  126 Schlesinger H I, Burg A B. Hydrides of boron. VIII. The structure of the diammoniate of diborane and its relation to the structure of diborane. J Am Chem Soc, 1938, 60:290-299
[139]  127 Luedtke A T, Autrey T. Hydrogen release studies of alkali metal amidoboranes. Inorg Chem, 2010, 49:3905-3910
[140]  128 Wolstenholme D J, Titah J T, Che F N, et al. Homopolar dihydrogen bonding in alkali-metal amidoboranes and its implications for hydrogen storage. J Am Chem Soc, 2011, 133:16598-16604
[141]  129 Wolstenholme D J, Flogeras J, Che F N, et al. Homopolar dihydrogen bonding in alkali metal amidoboranes:Crystal engineering of low-dimensional molecular materials. J Am Chem Soc, 2013, 135:2439-2442
[142]  130 Kang X, Ma L, Fang Z, et al. Promoted hydrogen release from ammonia borane by mechanically milling with magnesium hydride:A new destabilizing approach. Phys Chem Chem Phys, 2009, 11:2507-2513

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133