全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

稻属AA型物种叶绿体基因组的适应性进化

DOI: 10.1360/N972014-00127, PP. 1975-1983

Keywords: 稻属AA型物种,适应性进化,叶绿体基因组,正选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

稻属AA型物种包含栽培稻和与其最近缘的野生稻物种,是稻属植物中一个重要的类群.为了探究稻属AA型物种叶绿体基因组的适应性进化,以AA型稻属物种中已经公布的6个叶绿体基因组为对象,利用PAML和Selecton对叶绿体基因进行适应性进化的分析.研究发现,4个基因(matK,ccsA,psbB和rpoC2)经历了正选择作用,并对基因的正选择位点进行了定位,初步分析了正选择位点的变异特点,探讨了正选择位点与蛋白质结构保守性的关系.本研究为深入了解稻属的叶绿体基因及其适应性进化提供了重要参考.

References

[1]  8 Kobayashi N, Ikeda R, Vaughan D A, et al. Resistance to Tungro in some wild relatives of rice. Int Rice Res Newslett, 1991, 16: 13-17
[2]  9 黄运平, 覃瑞. 野生稻资源的研究与利用. 湖北农业科学, 2002, 40: 16-19
[3]  12 Yang Z. Computational Molecular Evolution. Oxford: Oxford University Press, 2006
[4]  17 Wyman S K, Jansen R K, Boore J L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 2004, 20: 3252-3255
[5]  18 Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410
[6]  19 Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol, 2007, 24: 1596-1599
[7]  20 Ge S, Sang T, Lu B-R, et al. Phylogeny of the genus Oryza as revealed by molecular approaches. In: Rice Genetics IV Proceedings of the Fourth International Rice Genetics Symposium: 25 October, 2000. Los Ba?os, Laguna, Philippines. 2001, 89-105
[8]  21 Zhu T, Xu P Z, Liu J P, et al. Phylogenetic relationships and genome divergence among the AA-genome species of the genus Oryza as revealed by 53 nuclear genes and 16 intergenic regions. Mol Phylogenet Evol, 2014, 70: 348-361
[9]  22 Swofford D L. PAUP*: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, 1998
[10]  23 Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 2003, 52: 696-704
[11]  25 Huelsenbeck J P, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17: 754-755
[12]  26 Yang Z. PAML: A program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci, 1997, 13: 555-556
[13]  34 Bricker T M, Frankel L K. The structure and function of CP47 and CP43 in Photosystem II. Photosynth Res, 2002, 72: 131-146
[14]  35 Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22: 195-201
[15]  36 Wu Z Q, Ge S. The phylogeny of the BEP clade in grasses revisited: Evidence from the whole-genome sequences of chloroplasts. Mol Phylogenet Evol, 2012, 62: 573-578
[16]  37 Mohr G, Perlman P S, Lambowitz A M. Evolutionary relationships among group-II intron-encoded proteins and identification of a conserved domain that may be related to Maturase function. Nucleic Acids Res, 1993, 21: 4991-4997
[17]  38 Wim F. J. Vermaas J G K W, Arntzen C J. Sequencing and modification of psbB, the gene encoding the CP-47 protein of Photosystem II, in the cyanobacterium Synechocystis 6803. Plant Mol Biol, 1987, 4: 317-326
[18]  43 Molina J, Sikora M, Garud N, et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA, 2011, 108: 8351-8356
[19]  44 Khush G S. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol, 1997, 35: 25-34
[20]  45 Li C, Zhou A, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol, 2006, 170: 185-193
[21]  46 Chanfreau G, Jacquier A. Catalytic site components common to both splicing steps of a group-II intron. Science, 1994, 266: 1383-1387
[22]  47 Kelchner S A. Group II introns as phylogenetic tools: Structure function, and evolutionary constraints. Am J Bot, 2002, 89: 1651-1669
[23]  51 Clarke S M, Eaton-Rye J J. Amino acid deletions in loop C of the chlorophyll a-binding protein CP47 alter the chloride requirement and/or prevent the assembly of photosystem II. Plant Mol Biol, 2000, 44: 591-601
[24]  1 Zou X H, Zhang F M, Zhang J G, et al. Analysis of 142 genes resolves the rapid diversification of the rice genus. Genome Biol, 2008, 9: R49
[25]  2 刘铁燕, 陈明生. 稻属植物的基因组进化. 生物多样性, 2014, 22: 51-65
[26]  3 Lu F, Ammiraju J S, Sanyal A, et al. Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc Natl Acad Sci USA, 2009, 106: 2071-2076
[27]  4 Sang T, Ge S. The puzzle of rice domestication. J Integr Plant Biol, 2007, 49: 760-768
[28]  5 Sun C Q, Wang X K, Li Z C, et al. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet, 2001, 102: 157-162
[29]  6 汤圣祥, 江云珠, 张本敦, 等. 中国稻区的生物多样性. 生物多样性, 1999, 7: 73-78
[30]  7 Khush G S, Ling K C, Aquino R C, et al. Breeding for resistance to grassy stunt in rice. Plant Breeding Papers; Int Congr of the Society for the Advancement of Breeding Researches in Asia & Oceania, 1977. 3-9
[31]  10 Brar D S, Khush G S. Alien introgression in rice. In: Sasaki T, Moore G, eds. Oryza: From Molecule to Plant. Dordrecht: Kluwer Academic Publishers, 1997. 35-47
[32]  11 Shimada H, Sugiura M. Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Res, 1991, 19: 983-995
[33]  13 Yang Z, Swanson W J, Vacquier V D. Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol, 2000, 17: 1446-1455
[34]  14 Wong W S, Yang Z, Goldman N, et al. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics, 2004, 168: 1041-1051
[35]  15 Waters D L E, Nock C J, Ishikawa R, et al. Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice. Ecol Evol, 2012, 2: 211-217
[36]  16 Darling A C E, Mau B, Blattner F R, et al. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res, 2004, 14: 1394-1403
[37]  24 Posada D, Crandall K A. MODELTEST: testing the model of DNA substitution. Bioinformatics, 1998, 14: 817-818
[38]  27 Yang Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol, 1998, 15: 568-573
[39]  28 Nielsen R, Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 1998, 148: 929-936
[40]  29 Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol, 2005, 22: 2472-2479
[41]  30 Doron-Faigenboim A, Stern A, Mayrose I, et al. Selecton: A server for detecting evolutionary forces at a single amino-acid site. Bioinformatics, 2005, 21: 2101-2103
[42]  31 Doron-Faigenboim A, Pupko T. A combined empirical and mechanistic codon model. Mol Biol Evol, 2007, 24: 388-397
[43]  32 Hao D C, Chen S L, Xiao P G. Molecular evolution and positive Darwinian selection of the chloroplast maturase matK. J Plant Res, 2010, 123: 241-247
[44]  33 Hamel P P, Dreyfuss B W, Xie Z, et al. Essential histidine and tryptophan residues in CcsA, a system II polytopic cytochrome c biogenesis protein. J Biol Chem, 2003, 278: 2593-2603
[45]  39 Igloi G, Meinke A, Dory I, et al. Nucleotide sequence of the maize chloroplast rpo B/C1/C2 operon: Comparison between the derived protein primary structures from various organisms with respect to functional domains. Mol Gen Genet, 1990, 221: 379-394
[46]  40 Chen Z, Schertz K F, Mullet J E, et al. Characterization and expression of rpoC2 in CMS and fertile lines of sorghum. Plant Mol Biol, 1995, 28: 799-809
[47]  41 Williamson M P. The structure and function of proline-rich regions in proteins. Biochem J, 1994, 297(Pt 2): 249-260
[48]  42 Zhou W, Wang Z, Xing W, et al. Plasticity in latitudinal patterns of leaf N and P of Oryza rufipogon in China. Plant Biol (Stuttg), 2014, 10.1111/plb.12147
[49]  48 Xie Z, Merchant S. The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem, 1996, 271: 4632-4639
[50]  49 Simon J, Hederstedt L. Composition and function of cytochrome c biogenesis System II. FEBS J, 2011, 278: 4179-4188
[51]  50 Cummings M P, King L M, Kellogg E A. Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae). Mol Biol Evol, 1994, 11: 1-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133