全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

细菌鞭毛推进器复杂的蛋白组成和精致的空间结构

DOI: 10.1360/972013-971, PP. 1912-1918

Keywords: 细菌,鞭毛,鞭毛蛋白,纤毛,,空间排列

Full-Text   Cite this paper   Add to My Lib

Abstract:

鞭毛推进游动是细菌寻找最佳营养源的有效运动方式之一.细菌鞭毛由鞭毛基体、鞭毛钩和鞭毛丝3部分构成,该结构的合成和组装由50多个基因参与,是在精密的时、空调控下进行的生物过程.对鞭毛结构和功能的认知主要源自对几个常见模式细菌的研究.近期,针对海洋趋磁细菌的研究结果揭示了一种新型鞭毛运动器官复杂的蛋白组成及其高度精致的空间结构.12种鞭毛蛋白经不同程度的糖基化修饰后装配成7根鞭毛,并与24根纤毛在一个鞭毛鞘中排列成7个相互交织的六角形阵列.目前,这种鞭毛结构只在海洋趋磁球菌中观察到,推测是这类细菌为了适应海洋沉积物生境,经生态分化演变的结果.这种精巧的结构对现有的鞭毛组装和运行机制模型提出了挑战,并将推进今后对细菌表面附属物的装配与演化的深入研究.

References

[1]  1 Zhang W J, Santini C L, Bernadac A, et al. Complex spatial organization and flagellin composition of flagellar propeller from marine magnetotactic ovoid strain MO-1. J Mol Biol, 2012, 416: 558-570
[2]  2 Liu R, Ochman H. Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci USA, 2007, 104: 7116-7121
[3]  3 Paulick A, Koerdt A, Lassak J, et al. Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol, 2009, 71: 836-850
[4]  4 Terahara N, Krulwich T A, Ito M. Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci USA, 2008, 105: 14359-14364
[5]  5 Yonekura K, Maki-Yonekura S, Namba K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 2003, 424: 643-650
[6]  6 Faulds-Pain A, Birchall C, Aldridge C, et al. Flagellin redundancy in Caulobacter crescentus and its implications for flagellar filament assembly. J Bacteriol, 2011, 193: 2695-2707
[7]  7 Iida Y, Hobley L, Lambert C, et al. Roles of multiple flagellins in flagellar formation and flagellar growth post bdelloplast lysis in Bdellovibrio bacteriovorus. J Mol Biol, 2009, 394: 1011-1021
[8]  9 Lefèvre C T, Bernadac A, Zhang K Y, et al. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol, 2009, 11: 1646-1657
[9]  12 Schirm M, Soo E C, Aubry A J, et al. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol Microbiol, 2003, 48: 1579-1592
[10]  13 Ewing C P, Andreishcheva E, Guerry P. Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. J Bacteriol, 2009, 191: 7086-7093
[11]  15 Jones A C, Logan R P, Foynes S, et al. A flagellar sheath protein of Helicobacter pylori is identical to HpaA, a putative N-acetylneuram-inyllactose-binding hemagglutinin, but is not an adhesin for AGS cells. J Bacteriol, 1997, 179: 5643-5647
[12]  16 Hranitzky K W, Mulholland A, Larson A D, et al. Characterization of a flagellar sheath protein of Vibrio cholerae. Infect Immun, 1980, 27: 597-603
[13]  17 Radin J N, Gaddy J A, González-Rivera C, et al. Flagellar localization of a Helicobacter pylori autotransporter protein. MBio, 2013, 4: e00613-12
[14]  23 Guttenplan S B, Shaw S, Kearns D B. The cell biology of peritrichous flagella in Bacillus subtilis. Mol Microbiol, 2013, 87: 211-229
[15]  24 Berg H C. The rotary motor of bacterial flagella. Annu Rev Biochem, 2003, 72: 19-54
[16]  25 Kudo S, Imai N, Nishitoba M, et al. Asymmetric swimming pattern of Vibrio alginolyticus cells with single polar flagella. FEMS Microbiol Lett, 2005, 242: 221-225
[17]  30 Zhang W J, Chen C, Li Y, et al. Configuration of redox gradient determines magnetotactic polarity of the marine bacteria MO-1. Environ Microbiol Rep, 2010, 2: 646-650
[18]  31 林巍, 潘永信. 趋磁细菌多样性及其环境意义. 第四纪研究, 2012, 32: 567-575
[19]  32 Zhang S D, Petersen N, Zhang W J, et al. Swimming behaviour and magnetotaxis function of the marine bacterium strain MO-1. Environ Microbiol Rep, 2014, 6: 14-20
[20]  8 Tambalo D D, Bustard D E, Del Bel K L, et al. Characterization and functional analysis of seven flagellin genes in Rhizobium leguminosarum bv. viciae. Characterization of R. leguminosarum flagellins. BMC Microbiol, 2010, 10: 219
[21]  10 Bazylinski D A, Williams T J, Lefèvre C T, et al. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int J Syst Evol Microbiol, 2013, 63: 801-808
[22]  11 Takeuchi K, Taguchi F, Inagaki Y, et al. Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J Bacteriol, 2003, 185: 6658-6665
[23]  14 Glauert A M, Kerridge D, Horne R W. The fine structure and mode of attachment of the sheathed flagellum of Vibrio metchnikovii. J Cell Biol, 1963, 18: 327-336
[24]  18 Ruan J, Kato T, Santini C L, et al. Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1. Proc Natl Acad Sci USA, 2012, 109: 20643-20648
[25]  19 Lefèvre C T, Santini C L, Bernadac A, et al. Calcium ion-mediated assembly and function of glycosylated flagellar sheath of marine magnetotactic bacterium. Mol Microbiol, 2010, 78: 1304-1312
[26]  20 Pandza S, Baetens M, Park C H, et al. The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol Microbiol, 2000, 36: 414-423
[27]  21 Green J C, Kahramanoglou C, Rahman A, et al. Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein. J Mol Biol, 2009, 391: 679-690
[28]  22 Correa N E, Peng F, Klose K E. Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J Bacteriol, 2005, 187: 6324-6332
[29]  26 Armitage J P, Schmitt R. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti-variations on a theme? Microbiology, 1997, 143: 3671-3682
[30]  27 Scharf B. Real-time imaging of fluorescent flagellar filaments of Rhizobium lupini H13-3: Flagellar rotation and pH-induced polymorphic transitions. J Bacteriol, 2002, 184: 5979-5986
[31]  28 周克, 潘红苗, 岳海东, 等. 青岛海洋趋磁球菌QH-3的鞭毛特征. 海洋科学, 2010, 34: 88-92
[32]  29 Bazylinski D A, Frankel R B. Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2004, 2: 217-230

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133