全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

基于纳米机械振子的光学质谱仪

DOI: 10.1360/972013-1156, PP. 1907-1911

Keywords: 纳米机械振子,质量测量,纳米碳管,石墨烯纳米带,光学质谱仪

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳米机械振子具有超小的质量、超高的品质因数和振动频率以及其他优点,越来越受到人们的关注和认可.随着纳米科技的快速发展,纳米机械振子逐步进入到生物、化学、物理、医学等领域,成为科学研究工作者追求高质量和高性能材料的辅助系统.本文总结了本课题组近年来对纳米机械振子研究的一个重要应用纳米光学质谱仪.在全光条件下,质量测量对象可为中性原子、质子、中子,也可为其他化学分子或生物分子等.我们提供的纳米机械振子材料为纳米碳管和石墨烯纳米带.研究发现,基于纳米机械振子的光学质谱仪与传统的电学质谱仪相比有很多优越性,如不会引发由电路引起的热效应和能量损失,基于质量测量的光学谱宽更窄等.与单束光探测方法相比,不受频率高低的限制.此研究工作提出的基于全光学的质量测量方案,打破了电学测量和单束光领域中的众多限制,有望更大程度地提高质量测量的灵敏度和准确度,为纳米测量领域提供一个新的平台.

References

[1]  1 Griffiths J. A brief history of mass spectrometry. Anal Chem, 2008, 80: 5678-5683
[2]  4 Roukes M L. Nanoelectromechanical systems face the future. Phys World, 2001, 14: 25-31
[3]  5 Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems. Phys Rep, 2013, 525: 223-254
[4]  11 Li J J, Zhu K D. Plasmon-assisted mass sensing in a hybrid nanocrystal coupled to a nanomechanical resonator. Phys Rev B, 2011, 83: 245421-7
[5]  12 Harris D. Weighing DNA down to the zeptogram. Phys Rev Focus, 2011, 25: 27
[6]  13 Li J J, Zhu K D. A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system. Appl Phys Lett, 2009, 94: 063116-3
[7]  14 Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic property and intrinsic strength of monolayer grapheme. Science, 2008, 321: 385-388
[8]  15 LaHaye M, Buu O, Camarota B, et al. Approaching the quantum limit of a nanomechanical resonator. Science, 2004, 304: 74-77
[9]  16 Chen C, Rosenblatt S, Bolotin K I, et al. Performance of monolayer graphenenanomechanical resonators with electrical readout. Nat Nanotech, 2009, 4: 861-867
[10]  17 Rugar D, Budakian R, Mamin H, et al. Single spin detection by magnetic resonance force microscopy. Nature, 2004, 430: 329-332
[11]  20 Kim S Y, Cho S, Kang J W, et al. Molecular dynamics simulation study on mechanical responses of nanoindented monolayer-graphene-nanoribbon, Phys E Low Dimens Syst Nanostruct, 2013, 54: 118-124
[12]  21 Sadeghi M, Naghdabadi R. Nonlinear vibrational analysis of single-layer graphene sheets. Nanotechnology, 2010, 21: 105705-10
[13]  22 Kim S Y, Park H S. The importance of edge effects on the intrinsic loss mechanisms of grapheme nanoresonators. Nano Lett, 2009, 9: 969-974
[14]  23 Sakhaee-Pour A, Ahmadian M T, Naghdabadi R. Vibrational analysis of single-layered graphene sheets. Nanotechnology, 2008, 19: 505501-10
[15]  2 Beynon J H. The history of mass spectrometry and the search for zero. Biomed Mass Spectrum, 1981, 8: 380-383
[16]  3 Boisen A. Nanoelectromechanical systems: Mass spec goes nanomechanical. Nature Nanotechnol, 2009, 4: 404-405
[17]  6 冯增会, 张展适. 同位素质谱分析测试技术进展. 地质学报, 2009, 29: 122-125
[18]  7 Lassagne B, Garcia-Sanchez D, Aguasca A, et al. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett, 2008, 8: 3735-3738
[19]  8 Li J J, Zhu K D. Tunable slow and fast light device based on a carbon nanotube resonator. Opt Express, 2012, 20: 5840-5848
[20]  9 Li J J, Jiang C, Chen B, et al. Optical mass sensing with a carbon nanotube resonator. J Opt Soc Am B, 2012, 29: 965-969
[21]  10 Li J J, Zhu K D. Weighing a single atom using a coupled plasmon-carbon nanotube system. Sci Tech Adv Mater, 2012, 13: 025006-6
[22]  18 Novoselov K S, Faíko V I, Colombo L, et al. A road map for grapheme. Nature, 2012, 490: 192-200
[23]  19 Ben W, Zhu K D. Nucleonic-resolution optical mass sensor based on a graphene nanoribbon quantum dot. Appl Opt, 2013, 52: 5816-5821
[24]  24 Kang J W, Lee J H, Hwang H J, et al. Developing accelerometer based on grapheme nanoribbon resonators. Phys Lett A, 2012, 376: 3248-3255
[25]  25 Yie Z, Zielke M A, Burgner C B, et al. Comparison of parametric and linear mass detection in the presence of detection noise. J Micromech Microeng, 2011, 21: 025027-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133