1 Griffiths J. A brief history of mass spectrometry. Anal Chem, 2008, 80: 5678-5683
[2]
4 Roukes M L. Nanoelectromechanical systems face the future. Phys World, 2001, 14: 25-31
[3]
5 Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems. Phys Rep, 2013, 525: 223-254
[4]
11 Li J J, Zhu K D. Plasmon-assisted mass sensing in a hybrid nanocrystal coupled to a nanomechanical resonator. Phys Rev B, 2011, 83: 245421-7
[5]
12 Harris D. Weighing DNA down to the zeptogram. Phys Rev Focus, 2011, 25: 27
[6]
13 Li J J, Zhu K D. A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system. Appl Phys Lett, 2009, 94: 063116-3
[7]
14 Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic property and intrinsic strength of monolayer grapheme. Science, 2008, 321: 385-388
[8]
15 LaHaye M, Buu O, Camarota B, et al. Approaching the quantum limit of a nanomechanical resonator. Science, 2004, 304: 74-77
[9]
16 Chen C, Rosenblatt S, Bolotin K I, et al. Performance of monolayer graphenenanomechanical resonators with electrical readout. Nat Nanotech, 2009, 4: 861-867
[10]
17 Rugar D, Budakian R, Mamin H, et al. Single spin detection by magnetic resonance force microscopy. Nature, 2004, 430: 329-332
[11]
20 Kim S Y, Cho S, Kang J W, et al. Molecular dynamics simulation study on mechanical responses of nanoindented monolayer-graphene-nanoribbon, Phys E Low Dimens Syst Nanostruct, 2013, 54: 118-124
[12]
21 Sadeghi M, Naghdabadi R. Nonlinear vibrational analysis of single-layer graphene sheets. Nanotechnology, 2010, 21: 105705-10
[13]
22 Kim S Y, Park H S. The importance of edge effects on the intrinsic loss mechanisms of grapheme nanoresonators. Nano Lett, 2009, 9: 969-974
[14]
23 Sakhaee-Pour A, Ahmadian M T, Naghdabadi R. Vibrational analysis of single-layered graphene sheets. Nanotechnology, 2008, 19: 505501-10
[15]
2 Beynon J H. The history of mass spectrometry and the search for zero. Biomed Mass Spectrum, 1981, 8: 380-383
[16]
3 Boisen A. Nanoelectromechanical systems: Mass spec goes nanomechanical. Nature Nanotechnol, 2009, 4: 404-405
7 Lassagne B, Garcia-Sanchez D, Aguasca A, et al. Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett, 2008, 8: 3735-3738
[19]
8 Li J J, Zhu K D. Tunable slow and fast light device based on a carbon nanotube resonator. Opt Express, 2012, 20: 5840-5848
[20]
9 Li J J, Jiang C, Chen B, et al. Optical mass sensing with a carbon nanotube resonator. J Opt Soc Am B, 2012, 29: 965-969
[21]
10 Li J J, Zhu K D. Weighing a single atom using a coupled plasmon-carbon nanotube system. Sci Tech Adv Mater, 2012, 13: 025006-6
[22]
18 Novoselov K S, Faíko V I, Colombo L, et al. A road map for grapheme. Nature, 2012, 490: 192-200
[23]
19 Ben W, Zhu K D. Nucleonic-resolution optical mass sensor based on a graphene nanoribbon quantum dot. Appl Opt, 2013, 52: 5816-5821
[24]
24 Kang J W, Lee J H, Hwang H J, et al. Developing accelerometer based on grapheme nanoribbon resonators. Phys Lett A, 2012, 376: 3248-3255
[25]
25 Yie Z, Zielke M A, Burgner C B, et al. Comparison of parametric and linear mass detection in the presence of detection noise. J Micromech Microeng, 2011, 21: 025027-5