全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

肠道菌群影响宿主行为的研究进展

DOI: 10.1360/N972014-00120, PP. 2169-2190

Keywords: 肠道菌群,肠-脑轴,焦虑,抑郁,认知

Full-Text   Cite this paper   Add to My Lib

Abstract:

肠道内定植了数量众多、种类丰富的肠道菌群,它们和宿主间形成了互利共生的关系,对宿主的健康产生着重大影响.近年来,随着对肠道菌群调控作用研究的不断深入,发现肠道菌群不仅调控肠道活动,还影响宿主的脑功能和行为.肠道菌群通过肠-脑轴调控宿主行为,而肠-脑轴是由免疫、神经内分泌和迷走神经途径构成的肠道和脑之间的交流系统.动物研究(无菌动物、肠道病原菌感染以及抗生素和益生菌处理动物)和临床观测结果表明,肠道菌群通过肠-脑轴对宿主的应激反应、焦虑、抑郁和认知功能产生重要影响.平衡的肠道菌群可以促进宿主的身心健康,而肠道菌群失调则可能引发肠-脑疾病(如肠易激综合征、炎性肠道疾病和肝性脑病)和中枢神经系统疾病(如多发性硬化症、阿尔兹海默症和自闭症等).深入了解肠道菌群对宿主行为的影响,有助于更好地理解肠易激综合征和多发性硬化症等的发病机理,并认识到调节和恢复正常肠道菌群的安全有效措施(补充益生菌)是治疗精神心理疾病的重要组成部分.

References

[1]  1 Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464: 59-65
[2]  2 Gill S R, Pop M, DeBoy R T, et al. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312: 1355-1359
[3]  3 Sekirov I, Russell S L, Antunes L C, et al. Gut microbiota in health and disease. Physiol Rev, 2010, 90: 859-904
[4]  4 Clemente J C, Ursell L K, Parfrey L W, et al. The impact of the gut microbiota on human health: An integrative view. Cell, 2012, 148: 1258-1270
[5]  9 Round J L, Mazmanian S K. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol, 2009, 9: 313-323
[6]  11 Collins S M, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology, 2009, 136: 2003-2014
[7]  15 Cryan J F, Dinan T G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 2012, 13: 701-712
[8]  16 Gareau M G, Wine E, Rodrigues D M, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 2011, 60: 307-317
[9]  17 Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011, 141: 599-609
[10]  18 Bercik P, Verdu E F, Foster J A, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology, 2010, 139: 2102-2112
[11]  21 Lyte M, Li W, Opitz N, et al. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav, 2006, 89: 350-357
[12]  22 Suzana T G, Aleksandar N, Dusan L, et al. Irritable bowel syndrome, anxiety, depression and personality characteristics. Psychiatr Danub, 2010, 22: 418-424
[13]  23 Addolorato G, Mirijello A, D'Angelo C, et al. State and trait anxiety and depression in patients affected by gastrointestinal diseases: Psychometric evaluation of 1641 patients referred to an internal medicine outpatient setting. Int J Clin Pract, 2008, 62: 1063-1069
[14]  24 H?user W J, Janke K H, Klump B, et al. Anxiety and depression in patients with inflammatory bowel disease: Comparisons with chronic liver disease patients and the general population. Inflamm Bowel Dis, 2011, 17: 621-632
[15]  25 Saul W. Hyperammonemic encephalopathy. Medicine (Abingdon), 2002, 81: 240-249
[16]  26 Cryan J F, O'Mahony S M. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol Motil, 2011, 23: 187-192
[17]  27 Kassinen A, Krogius-Kurikka L, M?kivuokko H, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology, 2007, 133: 24-33
[18]  28 Seksik P, Rigottier-Gois L, Gramet G, et al. Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut, 2003, 52: 237-242
[19]  34 Rao A V, Bested A C, Beaulne T M, et al. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog, 2009, 1: 6
[20]  35 Hsiao E Y, McBride S W, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013, 155: 1451-1463
[21]  36 Brenner S R. Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as Beta-N-Methylamino-l- Alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson-Dementia- Complex in humans and Equine Motor Neuron Disease in horses. Med Hypotheses, 2013, 80: 103
[22]  42 Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res, 2007, 14: 169-181
[23]  43 Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291: 1304-1351
[24]  44 International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800
[25]  48 Pluznick J L, Protzko R J, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA, 2013, 110: 4410-4415
[26]  49 DiBaise J K, Frank D N, Mathur R. Impact of the gut microbiota on the development of obesity: Current concepts. Am J Gastroenterol Suppl, 2012, 1: 22-27
[27]  50 Naseer M I, Bibi F, Alqahtani M H, et al. Role of gut microbiota in obesity, type 2 diabetes and Alzheimer's disease. CNS Neurol Disord Drug Targets, 2014, 13: 305-311
[28]  55 Grenham S, Clarke G, Cryan J F, et al. Brain-gut-microbe communication in health and disease. Front Physiol, 2011, 2: 94
[29]  56 Mackie R I, Sghir A, Gaskins H R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr, 1999, 69: S1035-S1045
[30]  57 Palmer C, Bik E M, DiGiulio D B, et al. Development of the human infant intestinal microbiota. PLoS Biol, 2007, 5: e177
[31]  59 Forsythe P, Sudo N, Dinan T, et al. Mood and gut feelings. Brain Behav Immun, 2010, 24: 9-16
[32]  60 Franceschi C, Bonafe M, Valensin S, et al. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann Ny Acad Sci, 2000, 908: 244-254
[33]  61 Claesson M J, Cusack S, O'Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA, 2011, 108: 4586-4591
[34]  62 Claesson M J, Jeffery I B, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488: 178-184
[35]  63 Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 2012, 336: 489-493
[36]  64 B?ckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA, 2004, 101: 15718-15723
[37]  65 Cryan J F, Dinan T G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 2012, 13: 701-712
[38]  66 Furness J B, Kunze W A, Clerc N. Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory organ: Neural, endocrine, and immune responses. Am J Physiol, 1999, 277: G922-G928
[39]  67 Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol, 2008, 8: 411-420
[40]  72 Dantzer R, O'Connor J C, Freund G G, et al. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat Rev Neurosci, 2008, 9: 46-56
[41]  78 Schiltz J C, Sawchenko P E. Distinct brain vascular cell types manifest inducible cyclooxygenase expression as a function of the strength and nature of immune insults. J Neurosci, 2002, 22: 5606-5618
[42]  80 McHardy I, Li X, Tong M, et al. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1: 26
[43]  81 Gareau M G, Wine E, Rodrigues D M, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 2011, 60: 307-317
[44]  86 Gareau M G, Jury J, MacQueen G, et al. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut, 2007, 56: 1522-1528
[45]  87 Ait-Belgnaoui A, Durand H, Cartier C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 2012, 37: 1885-1895
[46]  90 Ruddick J P, Evans A K, Nutt D J, et al. Tryptophan metabolism in the central nervous system: Medical implications. Expert Rev Mol Med, 2006, 8: 1-27
[47]  91 Desbonnet L, Garrett L, Clarke G, et al. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiat Res, 2008, 43: 164-174
[48]  93 Grundy D, Al-Chaer E D, Aziz Q, et al. Fundamentals of neurogastroenterology: Basic science. Gastroenterology, 2006, 130: 1391-1411
[49]  98 de Lartigue G, de La Serre C B, Raybould H E. Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav, 2011, 105: 100-105Barbara G, Wang B, Stanghellini V, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology, 2007, 132: 26-37
[50]  100 Romeo H E, Tio D L, Rahman S U, et al. The glossopharyngeal nerve as a novel pathway in immune-to-brain communication: Relevance to neuroimmune surveillance of the oral cavity. J Neuroimmunol, 2001, 115: 91-100
[51]  101 Bluthé R M, Walter V, Parnet P. Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C R Acad Sci, 1994, 317: 499-503
[52]  102 Powley T L, Wang X Y, Fox E A, et al. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil, 2008, 20: 69-79
[53]  103 McVey Neufeld K A, Mao Y K, Bienenstock J, et al. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil, 2013, 25: 183-188
[54]  107 Neufeld K M, Kang N, Bienenstock J, et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil, 2011, 23: 255-264
[55]  108 Bergami M, Rimondini R, Santi S, et al. Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci USA, 2008, 105: 15570-15575
[56]  110 Barkus C, McHugh S B, Sprengel R, et al. Hippocampal NMDA receptors and anxiety: At the interface between cognition and emotion. Eur J Pharmacol, 2010, 626: 49-56
[57]  111 Jacobson L H, Cryan J F. Feeling strained? Influence of genetic background on depression-related behavior in mice: A review. Behav Genet, 2007, 37: 171-213
[58]  112 Benson A K, Kelly S A, Legge R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA, 2010, 107: 18933-18938
[59]  113 Neufeld K A, Kang N, Bienenstock J, et al. Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol, 2011, 4: 492-494
[60]  114 Rogel-Salazar G, López-Rubalcava C. Evaluation of the anxiolytic-like effects of clomipramine in two rat strains with different anxiety vulnerability (Wistar and Wistar-Kyoto rats): Participation of 5-HT1A receptors. Behav Pharmacol, 2011, 22: 136-146
[61]  115 Riebe, Caitlin J, Wotjak, et al. A practical guide to evaluating anxiety-related behavior in rodents. TRP Channels in Drug Discovery. Volume 1. Clifton: Humana Press, 2012. 167-185
[62]  116 Anchan D, Clark S, Pollard K, et al. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain Behav, 2014, 4: 51-59
[63]  117 An X L, Zou J X, Wu R Y, et al. Strain and sex differences in anxiety-like and social behaviors in C57BL/6J and BALB/cJ mice. Exp Anim Tokyo, 2011, 60: 111-123
[64]  118 Collins S, Verdu E, Denou E, et al. The role of pathogenic microbes and commensal bacteria in irritable bowel syndrome. Dig Dis, 2009, 27: 85-89
[65]  120 Gaykema R P, Goehler L E, Lyte M. Brain response to cecal infection with Campylobacter jejuni: Analysis with Fos immunohistochemistry. Brain Behav Immun, 2004, 18: 238-245
[66]  121 Wang X, Wang B R, Zhang X J, et al. Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J Gastroenterol, 2002, 8: 540-545
[67]  133 Silk D B, Davis A, Vulevic J, et al. Clinical trial: The effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharm Therap, 2009, 29: 508-518
[68]  134 Messaoudi M, Lalonde R, Violle N, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Brit J Nutr, 2011, 105: 755-764
[69]  135 Logan A C, Venket Rao A, Irani D. Chronic fatigue syndrome: Lactic acid bacteria may be of therapeutic value. Med Hypotheses, 2003, 60: 915-923
[70]  136 Tillisch K, Labus J S, Ebrat B, et al. Modulation of the brain-gut axis after 4-week intervention with a probiotic fermented dairy product. Gastroenterology, 2012, 142: S115
[71]  140 Heitkemper M, Jarrett M. Irritable bowel syndrome: Does gender matter? J Psychosom Res, 2008, 64: 583-587
[72]  141 Cain K, Jarrett M, Burr R, et al. Gender differences in gastrointestinal, psychological, and somatic symptoms in irritable bowel syndrome. Digest Dis Sci, 2009, 54: 1542-1549
[73]  144 Ghoshal U C, Kumar S, Mehrotra M, et al. Frequency of small intestinal bacterial overgrowth in patients with irritable bowel syndrome and chronic non-specific diarrhea. J Neurogastroenterol Motil, 2010, 16: 40-46
[74]  145 Chang J Y, Talley N J. An update on irritable bowel syndrome: From diagnosis to emerging therapies. Curr Opin Gastroenterol, 2011, 27: 72-78
[75]  150 Lin H C. Small intestinal bacterial overgrowth: A framework for understanding irritable bowel syndrome. JAMA, 2004, 292: 852-858
[76]  151 Parisi G, Leandro G, Bottona E, et al. Small intestinal bacterial overgrowth and irritable bowel syndrome. Am J Gastroenterol, 2003, 98: 2572-2572
[77]  152 Lee H R, Pimentel M. Bacteria and irritable bowel syndrome: The evidence for small intestinal bacterial overgrowth. Curr Gastroenterol Rep, 2006, 8: 305-311
[78]  155 Parry S D, Stansfield R, Jelley D, et al. Does bacterial gastroenteritis predispose people to functional gastrointestinal disorders? A prospective, community-based, case-control study. Am J Gastroenterol, 2003, 98: 1970-1975
[79]  156 Ericsson C D, Hatz C, DuPont A W. Postinfectious irritable bowel syndrome. Clin Infect Dis, 2008, 46: 594-599
[80]  157 Spiller R C. Is IBS caused by infectious diarrhea? Nat Clin Pract Gastroenterol Hepatol, 2007, 4: 642-643
[81]  158 Ji S, Park H, Lee D, et al. Post-infectious irritable bowel syndrome in patients with Shigella infection. J Gastroen Hepatol, 2005, 20: 381-386
[82]  164 Malinen E, Rinttila T, Kajander K, et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol, 2005, 100: 373-382
[83]  165 Tana C, Umesaki Y, Imaoka A, et al. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil, 2010, 22: 512-519
[84]  168 Lindgren S, Stewenius J, Sj?lund K, et al. Autonomic vagal nerve dysfunction in patients with ulcerative colitis. Scand J Gastroenterol, 1993, 28: 638-642
[85]  169 Lindgren S, Lilja B, Ros?n I, et al. Disturbed autonomic nerve function in patients with Crohn’s disease. Scand J Gastroenterol, 1991, 26: 361-366
[86]  170 Ganguli S C, Kamath M V, Redmond K, et al. A comparison of autonomic function in patients with inflammatory bowel disease and in healthy controls. Neurogastroenterol Motil, 2007, 19: 961-967
[87]  172 Graff L A, Walker J R, Bernstein C N. Depression and anxiety in inflammatory bowel disease: A review of comorbidity and management. Inflamm Bowel Dis, 2009, 15: 1105-1118
[88]  173 Kurina L M, Goldacre M J, Yeates D, et al. Depression and anxiety in people with inflammatory bowel disease. J Epidemiol Community Health, 2001, 55: 716-720
[89]  174 Mittermaier C, Dejaco C, Waldhoer T, et al. Impact of depressive mood on relapse in patients with inflammatory bowel disease: A prospective 18-month follow-up study. Psychosom Med, 2004, 66: 79-84
[90]  175 Addolorato G, Capristo E, Stefanini G F, et al. Inflammatory bowel disease: A study of the association between anxiety and depression, physical morbidity, and nutritional status. Scand J Gastroenterol, 1997, 32: 1013-1021
[91]  176 Nahon S, Lahmek P, Durance C, et al. Risk factors of anxiety and depression in inflammatory bowel disease. Inflamm Bowel Dis, 2012, 18: 2086-2091
[92]  177 Hansen J, Gulati A, Sartor R B. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol, 2010, 26: 564-571
[93]  181 Hoentjen F, Welling G W, Harmsen H J, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis, 2005, 11: 977-985
[94]  182 Bajaj J S. Review article: The modern management of hepatic encephalopathy. Aliment Pharm Therap, 2010, 31: 537-547
[95]  183 Bajaj J S, Hylemon P B, Younossi Z. The intestinal microbiota and liver disease. Am J Gastroenterol Suppl, 2012, 1: 9-14
[96]  186 Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology, 2011, 54: 562-572
[97]  187 Bajaj J S, Gillevet P, Patel N, et al. A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy. Metab Brain Dis, 2012, 27: 205-215
[98]  188 Bajaj J S, Hylemon P B, Ridlon J M, et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol-gastr L, 2012, 303: G675-G685
[99]  189 Solga S F, Diehl A M. Gut flora-based therapy in liver disease? The liver cares about the gut. Hepatology, 2004, 39: 1197-1200
[100]  190 Dhiman R K, Chawla Y K. Minimal hepatic encephalopathy: Should we start treating it? Gastroenterology, 2004, 127: 1855-1857
[101]  194 Bass N M, Mullen K D, Sanyal A, et al. Rifaximin treatment in hepatic encephalopathy. New Engl J Med, 2010, 362: 1071-1081
[102]  197 Bajaj J S, Heuman D M, Wade J B, et al. Rifaximin improves driving simulator performance in a randomized trial of patients with minimal hepatic encephalopathy. Gastroenterology, 2011, 140: 478-487
[103]  198 Prasad S, Dhiman R K, Duseja A, et al. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology, 2007, 45: 549-559
[104]  199 Horsmans Y, Solbreux P M, Daenens C, et al. Lactulose improves psychometric testing in cir-rhotic patients with subclinical encepha-lopathy. Aliment Pharmacol Ther, 1997, 11: 165-170
[105]  200 Mittal V V, Sharma B C, Sharma P, et al. A randomized controlled trial comparing lactulose, probiotics, and L-ornithine L-aspartate in treatment of minimal hepatic encephalopathy. Eur J Gastroenterol Hepatol, 2011, 23: 725-732
[106]  207 Wessely S, Chalder T, Hirsch S, et al. Psychological symptoms, somatic symptoms, and psychiatric disorder in chronic fatigue and chronic fatigue syndrome: A prospective study in the primary care setting. Am J Psychiatry, 1996, 153: 1050-1059
[107]  208 Butt H L, Dunstan R H, McGregor N R, et al. “Bacterial colonosis” in patients with persistent fatigue. Proceedings of the AHMF International Clinical and Scientific Conference. Sydney, Australia, 2001
[108]  209 Eveng?rd B, Gr?ns H, Wahlund E, et al. Elevated levels of Candida albicans in the faecal microflora of chronic fatigue syndrome patients during the acute phase of illness. Scand J Gastroent, 2007, 42: 1514-1515
[109]  210 Sullivan A, Nord C, Evengard B. Effect of supplement with lactic-acid producing bacteria on fatigue and physical activity in patients with chronic fatigue syndrome. Nutr J, 2009, 8: 4
[110]  211 Plauché J C, Myers S M. Identification and evaluation of children with autism spectrum disorders. Pediatrics, 2007, 120: 1183-1215
[111]  212 Hallmayer J, Cleveland S, Torres A, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiat, 2011, 68: 1095-1102
[112]  213 Adams J B, Romdalvik J, Levine K E, et al. Mercury in first-cut baby hair of children with autism versus typically-developing children. Toxicol Environ Chem, 2008, 90: 739-753
[113]  214 Niehus R, Lord C. Early medical history of children with autism spectrum disorders. J Dev Behav Pediatr, 2006, 27: S120-S127
[114]  215 Willing B P, Russell S L, Finlay B B. Shifting the balance: Antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol, 2011, 9: 233-243
[115]  216 de Theije C G, Wopereis H, Ramadan M, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun, 2014, 37: 197-206
[116]  217 Parracho H M, Bingham M O, Gibson G R, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol, 2005, 54: 987-991
[117]  227 Banack S A, Caller T A, Stommel E W. The cyanobacteria derived toxin beta-N-methylamino-L-alanine and amyotrophic lateral sclerosis. Toxins, 2010, 2: 2837-2850
[118]  228 Vyas K J, Weiss J H. BMAA—An unusual cyanobacterial neurotoxin. Amyotroph Lateral Scler, 2009, 10: 50-55
[119]  229 Tran L, Greenwood-Van Meerveld B. Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci, 2013, 68: 1045-1056
[120]  230 Ball M J, Lukiw W J, Kammerman E M, et al. Intracerebral propagation of Alzheimer’s disease: Strengthening evidence of a herpes simplex virus etiology. Alzheimers Dement, 2013, 9: 169-175
[121]  234 Logan A C, Katzman M. Major depressive disorder: Probiotics may be an adjuvant therapy. Med Hypotheses, 2005, 64: 533-538
[122]  235 Basseri R J, Weitsman S, Barlow G M, et al. Antibiotics for the treatment of irritable bowel syndrome. Gastroenterol Hepatol, 2011, 7: 455-493
[123]  237 Mullen K, Prakash R. Antibiotic treatment for hepatic encephalopathy. Hepatic Encephalopathy. Clifton: Humana Press, 2012
[124]  239 Hviid A, Svanstr?m H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut, 2011, 60: 49-54
[125]  242 Kajander K, Myllyluoma E, Rajili?-Stojanovi? M, et al. Clinical trial: Multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharm Therap, 2008, 27: 48-57
[126]  243 Malin M, Suomalainen H, Saxelin M, et al. Promotion of IgA immune response in patients with Crohn’s disease by oral bacteriotherapy with Lactobacillus GG. Ann Nutr Metab, 1996, 40: 137-145
[127]  244 Gupta P, Andrew H, Kirschner B S, et al. Is lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. J Pediatr Gastroenterol Nutr, 2000, 31: 453-457
[128]  245 Shukla S, Shukla A, Mehboob S, et al. Meta-analysis: The effects of gut flora modulation using prebiotics, probiotics and synbiotics on minimal hepatic encephalopathy. Aliment Pharm Therap, 2011, 33: 662-671
[129]  246 Bajaj J S, Saeian K, Christensen K M, et al. Probiotic yogurt for the treatment of minimal hepatic encephalopathy. Am J Gastroenterol, 2008, 103: 1707-1715
[130]  249 Guglielmetti S, Mora D, Gschwender M, et al. Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life--a double-blind, placebo-controlled study. Aliment Pharm Therap, 2011, 33: 1123-1132
[131]  250 SimréN M, ?Hman L, Olsson J, et al. Clinical trial: The effects of a fermented milk containing three probiotic bacteria in patients with irritable bowel syndrome--A randomized, double-blind, controlled study. Aliment Pharm Therap, 2010, 31: 218-227
[132]  251 S?ndergaard B, Olsson J, Ohlson K, et al. Effects of probiotic fermented milk on symptoms and intestinal flora in patients with irritable bowel syndrome: A randomized, placebo-controlled trial. Scand J Gastroenterol, 2011, 46: 663-672
[133]  252 Simrén M, Barbara G, Flint H J, et al. Intestinal microbiota in functional bowel disorders: A Rome foundation report. Gut, 2012: 302167
[134]  255 Engevik M A, Hickerson A, Shull G E, et al. Acidic conditions in the NHE2-/- mouse intestine result in an altered mucosa-associated bacterial population with changes in mucus oligosaccharides. Cell Physiol Biochem, 2013, 32: 111-128
[135]  256 Li Z J, Yi G F, Yin J D, et al. Effects of organic acids on growth performance, gastrointestinal pH, intestinal microbial populations and immune tesponses of weaned pigs. Asian-Aust J Anim Sci, 2008, 21: 252-261
[136]  257 Cotter P D, Hill C. Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev, 2003, 67: 429-453
[137]  258 Charteris W P, Kelly P M, Morelli L, et al. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol, 1998, 84: 759-768
[138]  260 López P, Gueimonde M, Margolles A, et al. Distinct Bifidobacterium strains drive different immune responses in vitro. Int J Food Microbiol, 2010, 138: 157-165
[139]  261 Chapman C M, Gibson G R, Rowland I. Health benefits of probiotics: Are mixtures more effective than single strains? Eur J Nutr, 2011, 50: 1-17
[140]  95 Lynn P, Zagorodnyuk V, Hennig G, et al. Mechanical activation of rectal intraganglionic laminar endings in the guinea pig distal gut. J Physiol, 2005, 564: 589-601
[141]  96 Brierley S M. Molecular basis of mechanosensitivity. Auton Neurosci, 2010, 153: 58-68
[142]  97 Feng B, Gebhart G F. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am J Physiol Gastrointest Liver Physiol, 2011, 300: G170-G180
[143]  104 Kunze W A, Mao Y K, Wang B, et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med, 2009, 13: 2261-2270
[144]  105 Goehler L E, Park S M, Opitz N, et al. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: Possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun, 2008, 22: 354-366
[145]  106 Hooper L V, Wong M H, Thelin A, et al. Molecular analysis of commensal host-microbial relationships in the Intestine. Science, 2001, 291: 881-884
[146]  109 Akimova E, Lanzenberger R, Kasper S. The serotonin-1A receptor in anxiety disorders. Biol Psychiat, 2009, 66: 627-635
[147]  119 Herpfer I, Katzev M, Feige B, et al. Effects of substance P on memory and mood in healthy male subjects. Hum Psychopharmacol, 2007, 22: 567-573
[148]  122 Lilly D M, Stillwell R H. Probiotics: Growth-promoting factors produced by microorganisms. Science, 1965, 147: 747-748
[149]  123 Fooks L J, Gibson G R. Probiotics as modulators of the gut flora. Br J Nutr, 2002, 88: S39-S49
[150]  124 Ng S C, Hart A L, Kamm M A, et al. Mechanisms of action of probiotics: Recent advances. Inflamm Bowel Dis, 2009, 15: 300-310
[151]  125 Engelbrektson A, Korzenik J R, Pittler A, et al. Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. J Med Microbiol, 2009, 58: 663-670
[152]  126 Zareie M, Johnson-Henry K, Jury J, et al. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut, 2006, 55: 1553-1560
[153]  127 Arseneault-Bréard J, Rondeau I, Gilbert K, et al. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Brit J Nutr, 2012, 107: 1793-1799
[154]  128 Bravo J A, Forsythe P, Chew M V, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA, 2011, 108: 16050-16055
[155]  129 Clarke G, Cryan J F, Dinan T G, et al. Review article: Probiotics for the treatment of irritable bowel syndrome—Focus on lactic acid bacteria. Aliment Pharm Therap, 2012, 35: 403-413
[156]  130 Desbonnet L, Garrett L, Clarke G, et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience, 2010, 170: 1179-1188
[157]  131 Maes M, Berk M, Goehler L, et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Medicine, 2012, 10: 66-84
[158]  132 Logan A C, Katzman M. Major depressive disorder: Probiotics may be an adjuvant therapy. Med Hypotheses, 2005, 64: 533-538
[159]  137 Mayer E A. Irritable Bowel Syndrome. New Engl J Med, 2008, 358: 1692-1699
[160]  138 Modabbernia M J, Mansour-Ghanaei F, Imani A, et al. Anxiety-depressive disorders among irritable bowel syndrome patients in Guilan, Iran. BMC Res Notes, 2012, 5: 112
[161]  139 Henningsen P, Zimmermann T, Sattel H. Medically unexplained physical symptoms, anxiety, and depression: A meta-analytic review. Psychosom Med, 2003, 65: 528-533
[162]  142 Heitkemper M M, Jarrett M E. Update on irritable bowel syndrome and gender differences. Nutr Clin Pract, 2008, 23: 275-283
[163]  143 Katsanos A H, Giannopoulos S, Tsivgoulis G. The brain-gut axis in the pathophysiology of irritable bowel syndrome. Immuno- Gastroenterology, 2012, 1: 23-26
[164]  146 Gonsalkorale W M, Perrey C, Pravica V, et al. Interleukin 10 genotypes in irritable bowel syndrome: Evidence for an inflammatory component? Gut, 2003, 52: 91-93
[165]  147 O’Mahony L, McCarthy J, Kelly P, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles. Gastroenterology, 2005, 128: 541-551
[166]  148 Capuron L, Dantzer R. Cytokines and depression: The need for a new paradigm. Brain Behav Immun, 2003, 17: 119-124
[167]  149 Pimentel M, Lin H C, Enayati P, et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am J Physiol Gastrointest Liver Physiol, 2006, 290: G1089-G1095
[168]  153 Marshall J K, Thabane M, Garg A X, et al. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology, 2006, 131: 445-450
[169]  154 Spiller R C. Estimating the importance of infection in IBS. Am J Gastroenterol, 2003, 98: 238-241
[170]  159 Kerckhoffs A P, Samsom M, van der Rest M E, et al. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol, 2009, 15: 2887-2892
[171]  160 Kerckhoffs A P, Ben-Amor K, Samsom M, et al. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of Pseudomonas aeruginosa in irritable bowel syndrome. J Med Microbiol, 2011, 60: 236-245
[172]  161 Carroll I, Chang Y H, Park J, et al. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog, 2010, 2: 19
[173]  162 Si J M, Yu Y C, Fan Y J, et al. Intestinal microecology and quality of life in irritable bowel syndrome patients. World J Gastroenterol, 2004, 10: 1802-1805
[174]  163 M?tt? J, Maunuksela L, Kajander K, et al. Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome —A longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol, 2005, 43: 213-222
[175]  166 Ringel Y, Carroll I M. Alterations in the intestinal microbiota and functional bowel symptoms. Gastrointest Endosc Clin N Am, 2009, 19: 141-150
[176]  167 Xavier R J, Podolsky D K. Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007, 448: 427-434
[177]  171 Walker J R, Ediger J P, Graff L A, et al. The manitoba IBD cohort study: A population-based study of the prevalence of lifetime and 12-month anxiety and mood disorders. Am J Gastroenterol, 2008, 103: 1989-1997
[178]  178 Joossens M, Huys G, Cnockaert M, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut, 2011, 60: 631-637
[179]  179 Zhang M, Liu B, Zhang Y, et al. Structural shifts of mucosa-associated Lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol, 2007, 45: 496-500
[180]  180 Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of crohn disease patients. Proc Natl Acad Sci USA, 2008, 105: 16731-16736
[181]  184 Abu-Shanab A, Quigley E M. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol, 2010, 7: 691-701
[182]  185 Liu Q, Duan Z P, Ha D K, et al. Synbiotic modulation of gut flora: Effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology, 2004, 39: 1441-1449
[183]  191 Basile A S, Jones E A. Ammonia and GABA-ergic neurotransmission: Interrelated factors in the pathogenesis of hepatic encephalopathy. Hepatology, 1997, 25: 1303-1305
[184]  192 Williams R. Review article: Bacterial flora and pathogenesis in hepatic encephalopathy. Aliment Pharmacol Ther, 2007, 25(Suppl 1): 17-22
[185]  193 Sharma B C, Sharma P, Agrawal A, et al. Secondary prophylaxis of hepatic encephalopathy: An open-label randomized controlled trial of lactulose versus placebo. Gastroenterology, 2009, 137: 885-891
[186]  195 Morgan M Y. The treatment of chronic hepatic encephalopathy. Hepatogastroenterology, 1991, 38: 377-387
[187]  196 Sidhu S S, Goyal O, Mishra B P, et al. Rifaximin improves psychometric performance and health-related quality of life in patients with minimal hepatic encephalopathy (The RIME Trial). Am J Gastroenterol, 2011, 106: 307-316
[188]  201 Ascherio A, Munger K. Environmental risk factors for multiple sclerosis. Part I: The role of infection. Ann Neurol, 2007, 61: 288-299
[189]  202 Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 2011, 479: 538-541
[190]  203 Hornig M. The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol, 2013, 25: 488-795
[191]  204 Ben-Pazi H, Stoner J A, Cunningham M W. Dopamine receptor autoantibodies correlate with symptoms in sydenham’s chorea. PLoS One, 2013, 8: e73516
[192]  205 Eveng?rd B, Klimas N. Chronic fatigue syndrome: Probable pathogenesis and possible treatments. Drugs, 2002, 62: 2433-2446
[193]  206 Holgate S T, Komaroff A L, Mangan D, et al. Chronic fatigue syndrome: Understanding a complex illness. Nat Rev Neurosci, 2011, 12: 539-544
[194]  218 Kang D W, Park J G, Ilhan Z E, et al. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 2013, 8: e68322
[195]  219 Minami T, Oda K, Gima N, et al. Effects of lipopolysaccharide and chelator on mercury content in the cerebrum of thimerosaladministered mice. Environ Toxicol Phar, 2007, 24: 316-320
[196]  220 Zhu Y, Carvey P M, Ling Z. Altered glutathione homeostasis in animals prenatally exposed to lipopolysaccharide. Neurochem Int, 2007, 50: 671-680
[197]  221 Piemonte F, Pastore A, Tozzi G, et al. Glutathione in blood of patients with Friedreich’s ataxia. Eur J Clin Invest, 2001, 31: 1007-1011
[198]  222 Finegold S M, Dowd S E, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 2010, 16: 444-453
[199]  223 Song Y, Liu C, Finegold S M. Real-time PCR auantitation of clostridia in feces of autistic children. Appl Environ Microb, 2004, 70: 6459-6465
[200]  224 MacFabe D F, Cain N E, Boon F, et al. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res, 2011, 217: 47-54
[201]  225 Selmer T, Andrei P I. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. Eur J Biochem, 2001, 268: 1363-1372
[202]  226 Hishikawa N, Takahashi Y, Amakusa Y, et al. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu, 2012, 33: 499-504
[203]  231 Douglas-Escobar M, Elliott E, Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr, 2013, 167: 374-379
[204]  232 Horning M. The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol, 2013, 25: 488-795
[205]  233 Bravo J A, Julio-Pieper M, Forsythe P, et al. Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol, 2012, 12: 667-672
[206]  236 Perencevich M, Burakoff R. Use of antibiotics in the treatment of inflammatory bowel disease. Inflamm Bowel Dis, 2006, 12: 651-664
[207]  238 Jernberg C, L?fmark S, Edlund C, et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology, 2010, 156: 3216-3223
[208]  240 Bajaj J S, Sanyal A J, Bell D, et al. Predictors of the recurrence of hepatic encephalopathy in lactulose-treated patients. Aliment Pharm Therap, 2010, 31: 1012-1017
[209]  241 Flamm S L. Rifaximin treatment for reduction of risk of overt hepatic encephalopathy recurrence. Therap Adv Gastroenterol, 2011, 4: 199-206
[210]  247 Whorwell P J, Altringer L, Morel J, et al. Efficacy of an encapsulated probiotic bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol, 2006, 101: 1581-1590
[211]  248 Williams E A, Stimpson J, Wang D, et al. Clinical trial: Amultistrain probiotic preparation significantly reduces symptoms of irritable bowel syndrome in a double-blind placebo-controlled study. Aliment Pharm Therap, 2009, 29: 97-103
[212]  253 Mountzouris K C, McCartney A L, Gibson G R. Intestinal microflora of human infants and current trends for its nutritional modulation. Brit J Nutr, 2002, 87: 405-420
[213]  254 Guaraldi F, Salvatori G. Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol, 2012, 2: 94
[214]  259 Vissers Y M, Snel J, Zuurendonk P F, et al. Lactobacillus strains differentially modulate cytokine production by hPBMC from pollen-allergic patients. FEMS Immunol Med Microbiol, 2011, 61: 28-40
[215]  5 Bercik P, Collins S M, Verdu E F. Microbes and the gut-brain axis. Neurogastroenterol Motil, 2012, 24: 405-413
[216]  6 Round J L, O'Connell R M, Mazmanian S K. Coordination of tolerogenic immune responses by the commensal microbiota. J Autoimmun, 2010, 34: J220-J225
[217]  7 Furness J B. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol, 2012, 9: 286-294
[218]  8 Mayer E A, Aziz Q, Coen S, et al. Brain imaging approaches to the study of functional GI disorders: A Rome Working Team Report. Neurogastroenterol Motil, 2009, 21: 579-596
[219]  10 Raybould H E. Gut microbiota, epithelial function and derangements in obesity. J Physiol, 2012, 590: 441-446
[220]  12 Collins S M, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol, 2012, 10: 735-742
[221]  13 Bercik P. The microbiota-gut-brain axis: Learning from intestinal bacteria? Gut, 2011, 60: 288-289
[222]  14 Heijtz R D, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA, 2011, 108: 3047-3052
[223]  19 Bravo J A, Forsythe P, Chew M V, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA, 2011, 108: 16050-16055
[224]  20 Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol, 2004, 558: 263-275
[225]  29 Bajaj J S, Ridlon J M, Hylemon P B, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol-gastr L, 2012, 302: G168-G175
[226]  30 Verdú E F, Bercik P, Verma-Gandhu M, et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut, 2006, 55: 182-190
[227]  31 Garrett W S, Gallini C A, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe, 2010, 8: 292-300
[228]  32 Ohkusa T, Okayasu I, Ogihara T, et al. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. Gut, 2003, 52: 79-83
[229]  33 Borody T, Leis S, Campbell J, et al. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS). Am J Gastroenterol, 2011, 106: S352
[230]  37 Messaoudi M, Lalonde R, Violle N, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Brit J Nutr, 2011, 105: 755-764
[231]  38 Bercik P, Park A J, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil, 2011, 23: 1132-1139
[232]  39 Messaoudi M, Violle N, Bisson J F, et al. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes, 2011, 2: 256-261
[233]  40 Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr, 2007, 61: 355-361
[234]  41 Von Geldern G, Mowry E M. The influence of nutritional factors on the prognosis of multiple sclerosis. Nat Rev Neurol, 2012, 8: 678-689
[235]  45 Human Microbiome Project Consortium. A framework for human microbiome rese arch. Nature, 2012, 486: 215-221
[236]  46 Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486: 207-214
[237]  47 Forsythe P, Kunze W A, Bienenstock J. On communication between gut microbes and the brain. Curr Opin Gastroenterol, 2012, 28: 557-562
[238]  51 Bested A, Logan A, Selhub E. Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part III—convergence toward clinical trials. Gut Pathog, 2013, 5: 4
[239]  52 Ejtahed H S, Mohtadi-Nia J, Homayouni-Rad A, et al. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition, 2012, 28: 539-543
[240]  53 Ley R E, Peterson D A, Gordon J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006, 124: 837-848
[241]  54 Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora. Science, 2005, 308: 1635-1638
[242]  58 O'Keefe S J, Greer J B. Microbial induction of immunity, inflammation and cancer. Front Physiol, 2011, 1: 168
[243]  68 Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature, 2007, 449: 819-826
[244]  69 B?ckhed F, Ley R E, Sonnenburg J L, et al. Host-bacterial mutualism in the human intestine. Science, 2005, 307: 1915-1920
[245]  70 Cebra J J. Influences of microbiota on intestinal immune system development. Am J Clin Nutr, 1999, 69: S1046-S1051
[246]  71 Macpherson A J, Harris N L. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol, 2004, 4: 478-485
[247]  73 Maier S F, Watkins L R. Cytokines for psychologists: Implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev, 1998, 105: 83-107
[248]  74 Banks W A. The blood-brain barrier in psychoneuroimmunology. Immunol Allergy Clin, 2009, 29: 223-228
[249]  75 Quan N, Whiteside M, Herkenham M. Time course and localization patterns of interleukin-1β messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience, 1998, 83: 281-293
[250]  76 Vitkovic L, Konsman J P, Bockaert J, et al. Cytokine signals propagate through the brain. Mol Psychiatry, 2000, 5: 604-615
[251]  77 Konsman J P, Vigues S, Mackerlova L, et al. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: Relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. J Comp Neurol, 2004, 472: 113-129
[252]  79 Videnska P, Sisak F, Havlickova H, et al. Influence of Salmonella enterica serovar Enteritidis infection on the composition of chicken cecal microbiota. BMC Vet Res, 2013, 9: 140
[253]  82 Raybould H E. Gut chemosensing: Interactions between gut endocrine cells and visceral afferents. Auton Neurosci, 2010, 153: 41-46
[254]  83 Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 2013, 18: 666-673
[255]  84 García-Ródenas C L, Bergonzelli G E, Nutten S, et al. Nutritional approach to restore impaired intestinal barrier function and growth after neonatal stress in rats. J Pediatr Gastroenterol Nutr, 2006, 43: 16-24
[256]  85 O'Mahony S M, Marchesi J R, Scully P, et al. Early life stress alters behavior, immunity, and microbiota in rats: Implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiat, 2009, 65: 263-267
[257]  88 Hughes D T, Sperandio V. Inter-kingdom signalling: Communication between bacteria and their hosts. Nat Rev Microbiol, 2008, 6: 111-120
[258]  89 Gershon M D, Tack J. The serotonin signaling system: From basic understanding to drug development for functional GI disorders. Gastroenterology, 2007, 132: 397-414
[259]  92 Clerc N, Furness J B. Intrinsic primary afferent neurones of the digestive tract. Neurogastroenterol Motil, 2004, 16: 24-27
[260]  94 Phillips R J, Powley T L. Tension and stretch receptors in gastrointestinal smooth muscle: Re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Rev, 2000, 34: 1-26

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133