全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

功能生物界面的“微纳尺度构建-功能-力学耦合”机制

DOI: 10.1360/csb2014-59-22-2153, PP. 2153-2159

Keywords: 微纳尺度复合,生物界面,形貌,力学,曲率

Full-Text   Cite this paper   Add to My Lib

Abstract:

功能生物界面由于其呈现出的独特功能引起研究者的极大兴趣,而微纳尺度结构是其关键结构基元,它们是界面特定功能的内在本质.然而直到目前描述刻画特定功能的整个形成过程依旧困难.越来越多的证据开始支持功能生物界面上的“微纳尺度构建-功能-力学耦合”的论点.本文重点介绍不同微纳尺度复合功能生物界面上的“形貌和力学耦合行为”,以获得对微米纳米复合结构更好的理解.还介绍了自然界中生物体表气/液/固三相生物界面的“形貌-力学耦合行为”,生物体内微纳尺度的“形貌-力学耦合行为”,微纳尺度人工界面上活细胞的“形貌-力学耦合行为”和微纳尺度形貌、界面曲率与力学微环境的最新研究进展,并提出了一些新的概念,如“基于空间曲率的形貌-力学耦合行为”、“医学功能生物界面”和“生物力药理学”等.

References

[1]  1 Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot, 1997, 79: 667-677
[2]  2 Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14: 1857-1860
[3]  3 Neinhuis C, Barthlott W. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1-8
[4]  6 Parker A R, Lawrence C R. Water capture by a desert beetle. Nature, 2001, 414: 33-34
[5]  7 Zheng Y M, Bai H, Huang Z, et al. Directional water collection on wetted spider silk. Nature, 2010, 463: 640-643
[6]  8 Gao X F, Jiang L. Biophysics: Water-repellent legs of water striders. Nature, 2004, 432: 36
[7]  10 Lorenceau é, Quéré D. Drops on a conical wire. J Fluid Mech, 2004, 510: 29-45
[8]  11 Yin Y J, Chen C, Lv C J, et al. Shape gradient and classical gradient of curvatures: Driving forces on micro/nano curved surfaces. Appl Math Mech Engl Ed, 2010, 32: 533-550
[9]  13 Yuan Q Z, Zhao Y P. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. J Fluid Mech, 2013, 716: 171-188
[10]  17 Han D, Ma W Y, Liao F L, et al. Intracellular structural changes under the stress of applied force at a nanometre range investigated by atomic force microscopy. Nanotechnology, 2004, 15: 120-126
[11]  20 Sun T L, Tan H, Han D, et al. No platelet can adhere-largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small, 2005, 1: 959-963
[12]  22 Li H Y, Chen M, Yang J F, et al. Fluid flow along venous adventitia in rabbits: Is it a potential drainage system complementary to vascular circulations? PLoS One, 2012, 7: e41395
[13]  26 Liao F L, Li M, Han D, et al. Biomechanopharmacology: A new borderline discipline. Trends Pharmacol Sci, 2006, 27: 287
[14]  37 Kumar G, Co C C, Ho C C. Steering cell migration using microarray amplification of natural directional persistence. Langmuir, 2011, 27: 3803-3807
[15]  38 Chen L, Liu X L, Su B, et al. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv Mater, 2011, 23: 4376-4380
[16]  39 Dalby M J. Topographically induced direct cell mechanotransduction. Med Eng Phys, 2005, 27: 730-742
[17]  40 Kim D H, Lipke E A, Kim P, et al. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci USA, 2010, 107: 565-570
[18]  41 Yim E K F, Darling E M, Kulangara K, et al. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials, 2010, 31: 1299-1306
[19]  42 Huang K C, Ramamurthi K S. Macromolecules that prefer their membranes curvy. Mol Microbiol, 2010, 76: 822-832
[20]  44 Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol, 2006, 7: 265-275
[21]  4 Zheng Y M, Han D, Zhai J, et al. In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation. Appl Phys Lett, 2008, 92: 084106
[22]  5 Ju J, Bai H, Zheng Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun, 2012, 3: 1247
[23]  9 Feng X Q, Gao X F, Wu Z N, et al. Superiorwater repellence ability of water strider's legs with hierarchical structures: Experiments and analysis. Langmuir, 2007, 23: 4892-4896
[24]  12 赵亚溥. 表面与界面物理力学. 北京: 科学出版社, 2012
[25]  14 Sun T L, Feng L, Gao X F, et al. Bioinspired surfaces with special wettability. Acc Chem Res, 2005, 38: 644-652
[26]  15 Sun T L, Qing G Y, Su B L, et al. Functional biointerface materials inspired from nature. Chem Soc Rev, 2011, 40: 2909-2921
[27]  16 Mao Y D, Sun Q M, Wang X F, et al. In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. Appl Phys Lett, 2009, 95: 013704
[28]  18 Fan H L, Chen P P, Qi R M, et al. Largely improve blood-compatibility by microscopic multi-scale design of surface architectures. Small, 2009, 5: 2144-2148
[29]  19 Chen L, Liu M J, Bai H, et al. Antiplatelet and thermally responsive poly(N-isopropylacrylamide) surface by with nanoscale topography. J Am Chem Soc, 2009, 131: 10467-10472
[30]  21 Chiara N, Drew R E, Elmar B, et al. Boundary slip in Newtonian liquids: A review of experimental studies. Rep Prog Phys, 2005, 68: 2859
[31]  23 Feng J T, Wang F, Han X X, et al. “Green pathway” different from simple diffusion in soft matter: Fast molecule transport within micro/nanoscaled multiphase porous system. Nano Res, 2014, 7: 434-442
[32]  24 Ma W Y, Sun Y X, Han D, et al. Cytoskeletal response of microvessel endothelial cells to an applied stress force at the submicrometer scale studied by atomic force microscopy. Microsc Res Tech, 2006, 69: 784-793
[33]  25 Liao F L, Han D. S18-2 Biomechanopharmacology: A new discipline interfacing hemorheology and pharmacology. Biorheology, 2002, 39: 652
[34]  27 Feng J T, Tang Y, Xu Y, et al. Substrate stiffness influences the outcome of antitumor drug screening in vitro. Clin Hemorheol Microcirc, 2013, 55: 121-131
[35]  28 Harrison R G. On the stereotropism of embryoinc cells. Science, 1911, 34: 279-281
[36]  29 Jiang X Y, Bruzewicz D A, Wong A P, et al. Directiing cell migration with asymmetric micropatterns. Proc Natl Acad Sci USA, 2005, 102: 975-978
[37]  30 Chen C S, Mrksich M, Huang S, et al. Geometric control of cell life and death. Science, 1997, 276: 1425-1428
[38]  31 Kilian K A, Bugarija B, Lahn B T, et al. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA, 2010, 107: 4872-4877
[39]  32 Kumar G, Ho C C, Co C C. Guiding cell migration using one-way micropattern arrays. Adv Mater, 2007, 19: 1084-1090
[40]  33 Wang X, Ohlin C A, Lu Q, et al. Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene. Biomaterials, 2008, 29: 2049-2059
[41]  34 Flemming R G, Murphy C J, Abrams G A, et al. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials, 1999, 20: 573-588
[42]  35 Kim D H, Han K, Gupta K, et al. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials, 2009, 30: 5433-5444
[43]  36 Kim D H, Seo C H, Han K, et al. Guided cell migration on microtextured substrates with variable local density and anisotropy. Adv Funct Mater, 2009, 19: 1579-1586
[44]  43 McMahon H T, Gallop J L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature, 2005, 438: 590-596

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133