18 Liu X J, Xu J F, Castillo P R, et al. The Dupal isotopic anomaly in the southern Paleo-Asian Ocean: Nd-Pb isotope evidence from ophiolites in Northwest China. Lithos, 2014, 189: 185-200
20 Wang Z H, Sun S, Li J L, et al. Paleozoic tectonic evolution of northern Xinjiang, China: Geochemical and geochronological constrains from the ophiolites. Tectonics, 2003, 22: 1014-1023
27 Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 2008, 257: 34-43
[17]
28 Liu Y, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 2010, 51: 537-571
[18]
29 Ludwig K R. Users manual for Isoplot 3.0: A geochronological toolkit for Microsoft Exccel. Berkeley: Berkeley Geochronology Center, 2003, 35: 1-39
33 Humphris S E, Thompson G. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim Cosmochim Acta, 1978, 42: 127-136
[21]
34 Kusky T M. Precambrian ophiolites and related rocks. In: Condie K C, ed. Developments in Precambrian Geology. Amsterdam: Elsevier Publishers, 2004
[22]
37 Pearce J A, Robinson P T. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res, 2010, 18: 60-81
[23]
44 Xiao W, Windley B F, Badarchn G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the lateral growth of Central Asia. J Geol Soc Lond, 2004, 161: 339-342
[24]
46 Zhang Z C, Zhou G, Kusky T M, et al. Late Paleozoic volcanic record of the Eastern Junggar Terrane, Xinjiang, northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematica and implications for tectonic evolution. Gondwana Res, 2009, 16: 201-215
[25]
47 Zhang Z C, Mao J W, Cai J H. Geochemistry of picrites and associated lavas of a Devonian island arc in the Northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos, 2008, 105: 379-395
30 Schilling J G, Zajac M, Evans R, et al. Petrologic and geochemical variations along the Mid-Atlantic ridge from 29°N to 73°N. Am J Sci, 1983, 283: 510-586
[38]
31 Sun S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ, 1989, 42: 313-345
[39]
35 Dilek Y, Furnes H, Shallo M. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Res, 2007, 11: 453-475
[40]
36 Santosh M, Maruyama S, Sato K. Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern Indian. Gondwana Res, 2009, 16: 321-341
[41]
38 Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol Soc Lond Spec Publ, 1984, 16: 77-94
[42]
39 Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull, 2011, 123: 387-411
[43]
40 Wood D A. A variably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence. Geo-logy, 1979, 7: 499-503
[44]
41 Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol, 1979, 69: 33-47
[45]
42 Pearce J A. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, ed. Andesites: Orogenic Andesites and Related Rocks. Chichester: Wiley, 1982. 528-548
[46]
43 Shervais J W. Ti-V plots and the petrogenesis of modem ophiolitic lavas. Earth Planet Sci Lett, 1982, 59: 101-118
[47]
45 Xiao W J, Windley B F, Yuan C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids. Am J Sci, 2009, 309: 221-270