1 Sintubin L, Verstraete W, Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol Bioeng, 2012, 109: 2422-2436
[2]
3 You C, Han C, Wang X, et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep, 2012, 39: 9193-9201
[3]
4 Hsin Y H, Chen C F, Huang S, et al. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett, 2008, 179: 130-139
[4]
7 Guo D, Zhu L, Huang Z, et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials, 2013, 34: 7884-7894
[5]
9 Yen H J, Hsu S H, Tsai C L. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small, 2009, 5: 1553-1561
[6]
10 Marshall N J, Goodwin C J, Holt S J. A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul, 1995, 5: 69-84
[7]
11 Laaksonen T, Santos H, Vihola H, et al. Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem Res Toxicol, 2007, 20: 1913-1918
[8]
12 Hussain S M, Hess K L, Gearhart J M, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro, 2005, 19: 975-983
[9]
13 Hillegass J M, Shukla A, Lathrop S A, et al. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010, 2: 219-231
[10]
16 Avalos A, Haza A I, Mateo D, et al. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol, 2014, 34: 413-423
[11]
17 Chairuangkitti P, Lawanprasert S, Roytrakul S, et al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro, 2013, 27: 330-338
[12]
19 Monteiro-Riviere N A, Inman A O. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon, 2006, 44: 1070-1078
[13]
20 Falck G C, Lindberg H K, Suhonen S, et al. Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol, 2009, 28: 339-352
[14]
21 Chatterjee N, Eom H J, Choi J. Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen, 2014, 55: 122-133
[15]
22 Gurunathan S, Han J W, Eppakayala V, et al. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int, 2013, 2013: 1-10
[16]
29 Guo D, Zhao Y, Zhang Y, et al. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol, 2014, 10: 669-678
[17]
30 Kaur J, Tikoo K. Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles. Food Chem Toxicol, 2013, 51: 1-14
[18]
33 Haase A, Mantion A, Graf P, et al. A novel type of silver nanoparticles and their advantages in toxicity testing in cell culture systems. Arch Toxicol, 2012, 86: 1089-1098
[19]
34 Foldbjerg R, Dang D A, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol, 2011, 85: 743-750
[20]
35 Powers C M, Badireddy A R, Ryde I T, et al. Silver nanoparticles compromise neurodevelopment in PC12 cells: Critical contributions of silver ion, particle size, coating, and composition. Environ Health Perspect, 2011, 119: 37-44
[21]
36 Xiang D X, Chen Q, Pang L, et al. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods, 2011, 178: 137-142
[22]
37 Wojewódzka M L A, Dusińska M. Treatment with silver nanoparticles delays repair of X-ray induced DNA damage in HepG2 cells. Nukleonika, 2011, 56: 29-33
[23]
38 Franco-Molina M A, Mendoza-Gamboa E, Sierra-Rivera C A, et al. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res, 2010, 29: 148-154
[24]
39 Braydich-Stolle L K, Lucas B, Schrand A, et al. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci, 2010, 116: 577-589
[25]
40 Samberg M E, Oldenburg S J, Monteiro-Riviere N A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect, 2010, 118: 407-413
[26]
45 Kittler S, Greulich C, K?ller M, et al. Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. Materialwiss Werkst, 2009, 40: 258-264
[27]
46 AshaRani P V, Low Kah Mun G, Hande M P, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, 3: 279-290
[28]
49 Carlson C, Hussain S M, Schrand A M, et al. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J Phys Chem B, 2008, 112: 13608-13619
[29]
50 Shin S H, Ye M K, Kim H S, et al. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol, 2007, 7: 1813-1818
[30]
2 Takhar P M S. In vitro methods for nanotoxicity assessment: Advantages and applications. Arch Appl Sci Res, 2011, 3: 389-403
[31]
5 Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res, 2010, 12: 1531-1551
[32]
6 Karlsson H L. The comet assay in nanotoxicology research. Anal Bioanal Chem, 2010, 398: 651-666
[33]
8 Ahamed M, Karns M, Goodson M, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol, 2008, 233: 404-410
[34]
14 Lim D H, Jang J, Kim S, et al. The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials, 2012, 33: 4690-4699
[35]
15 Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol, 2009, 43: 6046-6051
[36]
18 Beer C, Foldbjerg R, Hayashi Y, et al. Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett, 2012, 208: 286-292
[37]
23 Nymark P, Catalan J, Suhonen S, et al. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology, 2013, 313: 38-48
[38]
24 Singh R P, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett, 2012, 213: 249-259
[39]
25 Foldbjerg R, Olesen P, Hougaard M, et al. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett, 2009, 190: 156-162
[40]
26 Lankoff A, Sandberg W J, Wegierek-Ciuk A, et al. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett, 2012, 208: 197-213
[41]
27 Kim S, Choi J E, Choi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro, 2009, 23: 1076-1084
[42]
28 Yang E J, Kim S, Kim J S, et al. Inflammasome formation and IL-1beta release by human blood monocytes in response to silver nanoparticles. Biomaterials, 2012, 33: 6858-6867
[43]
31 Grosse S, Evje L, Syversen T. Silver nanoparticle-induced cytotoxicity in rat brain endothelial cell culture. Toxicol In Vitro, 2013, 27: 305-313
[44]
32 Asare N, Instanes C, Sandberg W J, et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 2012, 291: 65-72
[45]
41 Lu W, Senapati D, Wang S, et al. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett, 2010, 487: 92-96
[46]
42 Laban G, Nies L F, Turco R F, et al. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology, 2010, 19: 185-195
[47]
43 Nowrouzi A, Meghrazi K, Golmohammadi T, et al. Cytotoxicity of subtoxic AgNP in human hepatoma cell line (HepG2) after long-term exposure. Iran Biomed J, 2010, 14: 23-32
[48]
44 Kalishwaralal K, Banumathi E, Ram Kumar Pandian S, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces, 2009, 73: 51-57
[49]
47 Arora S, Jain J, Rajwade J M, et al. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol, 2009, 236: 310-318
[50]
48 Arora S, Jain J, Rajwade J M, et al. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett, 2008, 179: 93-100
[51]
51 Hussain S M, Javorina A K, Schrand A M, et al. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci, 2006, 92: 456-463
[52]
52 Bhol K C, Schechter P J. Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br J Dermatol, 2005, 152: 1235-1242
[53]
53 Elechiguerra J L, Burt J L, Morones J R, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol, 2005, 3: 1-10
[54]
54 Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small, 2008, 4: 26-49
[55]
55 Ehrenberg M S, Friedman A E, Finkelstein J N, et al. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials, 2009, 30: 603-610
[56]
56 Wu Z, Zhang B, Yan B. Regulation of enzyme activity through interactions with nanoparticles. Int J Mol Sci, 2009, 10: 4198-4209