全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

光照对昼夜节律与警觉度的影响

DOI: 10.1360/N972014-00104, PP. 2253-2259

Keywords: 光照,昼夜节律,老龄化,白内障,脑电图,警觉度

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年研究发现,光照可以显著影响人类健康.光敏感视网膜神经节细胞的发现将研究者的关注点从传统的视觉信息传导通路转移至非自觉视觉信息传导通路—即将光照信息传递到非形觉相关的大脑功能区,如下丘脑视交叉上核,进而调解昼夜节律、神经内分泌等生理功能.这条通路生理功能的发挥与光照强度、性质、时间等有着密切联系.年龄相关性因素对实际入眼光照产生各方面的影响.随着不断深入研究光照对下丘脑视交叉上核昼夜节律调节作用,学者开始关注光照对警觉度的影响.我们根据国内外最新研究进展及课题组的研究成果(1)对比了传统的自觉视觉信息传导通路与非自觉视觉信息传导通路,总结了下丘脑视交叉上核在哺乳类动物生理及行为节律调控中的重要作用;(2)汇总了光照强度、作用时间、波段等因素对非自觉视觉信息传导通路功能的影响—调解昼夜节律、认知功能、警觉度;(3)分析了老龄化群体入眼光照减少的原因、产生的后果、以及白内障摘除手术的益处;(4)总结了脑电图技术作为一种评价警觉度的指标如何客观地反映光照对非自觉视觉信息传导通路的调解作用.

References

[1]  1 Ralph M R, Foster R G, Davis F C, et al. Transplanted suprachiasmatic nucleus determines circadian period. Science, 1990, 247: 975-978
[2]  2 Roenneberg T, Foster R G. Twilight times: Light and the circadian system. Photochem Photobiol, 1997, 66: 549-561
[3]  5 Provencio I, Jiang G, De Grip W J, et al. Melanopsin: An opsin in melanophores, brain and eye. Proc Nat Acad Sci USA, 1998, 95: 340-345
[4]  6 Hannibal J, Hindersson P, Knudson S M, et al. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci, 2002, 22: RC191
[5]  7 Berson D M, Dunn F A, Takao M. Phototransdunction by retinal ganglion cells that set the circadian clock. Science, 2002, 295:1070-1073
[6]  8 Dacey D M, Liao H W, Peterson B B, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature, 2005, 433: 749-754
[7]  9 Berson D M. Strange vision: Ganglion cells as circadian photoreceptors. Trends Neurosci, 2003, 26: 314-320
[8]  10 Hannibal J. Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res, 2002, 309: 73-88
[9]  11 Gooley J J, Lu J, Fischer D, et al. A broad role for melanopsin in nonvisual photoreception. J Neurosci, 2003, 23: 7093-7106
[10]  12 Hattar S, Liao H W, Takao M, et al. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science, 2002, 295: 1065-1070
[11]  13 Buijs R M, Scheer F A, Kreier F, et al. Chapter 20: Organization of circadian functions: Interaction with the body. Prog Brain Res, 2006,153: 341-360
[12]  14 Cajochen C, Munch M, Kobialka S, et al. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab, 2005, 90: 1311-1316
[13]  16 Vandewalle G, Gais S, Schabus M, et al. Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure. Cereb Cortex, 2007, 17: 2788-2795
[14]  19 Czeisler C A, Klerman E B. Circadian and sleep-dependent regulation of hormone release in humans. Recent Prog Horm Res, 1999, 54:97-130
[15]  20 Terman M, Lewy A J, Dijk D J, et al. Light treatment for sleep disorders: Consensus report. IV. Sleep phase and duration disturbances. J Biol Rhythms, 1995, 10: 135-147
[16]  21 Barker F M, Brainard G C. The Direct Spectral Transmittance of the Excised Human Lens as a Function of Age, (FDA 785345 0090 RA). Washington, DC: U.S. Food and Drug Administration, 1991
[17]  22 Yang Y, Thompson K, Burns S A. Pupil location under mesopic, photopic, and pharmacologically dilated conditions. Invest Ophthalmol Vis Sci, 2002, 43: 2508-2512
[18]  23 Turner P L, Mainster M A. Circadian photoreception: Aging and the eye’s important role in systemic health. Br J Ophthalmol, 2008, 92:1439-1444
[19]  24 Mainster M A, Turner P L. Blue-blocking IOLs decrease photoreception without providing significant photoprotection(epub). Surv Ophthalmol,2009, 55: 272-289
[20]  25 Mainster M A, Turner P L. Blue-blocking intraocular lenses: Visual and nonvisual photoreception. Retina, 2009, 29: 417-420
[21]  26 Asplund R, Lindblad B E. Sleep and sleepiness 1 and 9 months after cataract surgery. Arch Gerontol Geriatr, 2004, 38: 69-75
[22]  27 Brainard G C, Hanifin J P, Greeson J M, et al. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J Neurosci, 2001, 21: 6405-6412
[23]  28 Lack L C, Wright H R. Shorter wavelength light is more effective for changing melatonin phase. Chronobiol Int, 2003, 20: 1179-1181
[24]  29 Golden R N, Gaynes B N, Ekstrom R D, et al. The efficacy of light therapy in the treatment of mood disorders: A review and meta- analysis of the evidence. Am J Psych, 2005, 162: 656-662
[25]  30 Mills P R, Tomkins S C, Schlangen L J. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. J Circadian Rhythms, 2007, 5: 2
[26]  31 Lockley S W, Skene D J, Arendt J, et al. Relationship between melatonin rhythms and visual loss in the blind. J Clin Endocrinol Metab,1997, 82: 3763-3770
[27]  32 Middleton B, Stone B M, Arendt J. Human circadian phase in 12:12 h, 200:<8 lux and 1000:<8 lux light-dark cycles, without scheduled sleep or activity. Neurosci Lett, 2002, 329: 41-44
[28]  33 Dijk D J, Neri D F, Wyatt J K, et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol, 2001, 281: R1647-R1664
[29]  34 McIntyre I M, Norman T R, Burrows G D, et al. Quantal melatonin suppression by exposure to low intensity light in man. Life Sci, 1989,45: 327-332
[30]  35 Herljevic M, Middleton B, Thapan K, et al. Light-induced melatonin suppression: Age-related reduction in response to short wavelength light. Exp Gerontol, 2005, 40: 237-242
[31]  36 Sletten T L, Revell V L, Middleton B, et al. Age-related changes in acute and phase-advancing responses to monochromatic light. J Biol Rhythms, 2009, 24: 73-84
[32]  37 Savides T J, Messin S, Senger C, et al. Natural light exposure of young adults. Physiol Behav, 1986, 38: 571-574
[33]  39 Nicklas M H, Bailey G B. Analysis of the Performance of Students of Daylit Schools. Washington, DC: Education Resources Information Center, US Department of Education, 1996
[34]  40 Vandewalle G, Collignon O, Hull J T, et al. Blue light stimulates cognitive brain activity in visually blind individuals. J Cogn Neurosci,2013, 25: 2072-2085
[35]  44 Makeig S, Inlow M. Lapses in alertness: coherence of fluctuations in performance and EEG spectrum. Electroencephalogr Clin Neurophysiol,1993, 86: 23-25
[36]  45 Badia P, Myers B, Moecker M, et al. Bright light effects on body temperature, alertness, EEG and behavior. Physiol Behav, 1991, 50: 583-588
[37]  46 Figueiro M G, Bullough J D, Bierman A, et al. Rea MS: On light as an alerting stimulus at night. Acta Neurobiol Exp(Wars), 2007, 67: 171-178
[38]  47 Sahin L, Figueiro M G. Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon. Physiol Behav,2013, 27: 116-117
[39]  3 La Morgia C, Ross-Cisneros F N, Hannibal J, et al. Melanopsin-expressing retinal ganglion cells: Implications for human diseases. Vision Res, 2011, 51: 296-302
[40]  4 Foster R G, Provencio I, Hudson D, et al. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol, 1991, 169: 39-50
[41]  15 Lockley S W, Evans E E, Scheer F A, et al. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, 2006, 29: 161-168
[42]  17 Lambert G W, Reid C, Kaye D M, et al. Effect of sunlight and season on serotonin turnover in the brain. Lancet, 2002, 360: 1840-1842
[43]  18 St Hilaire M A, Gronfier C, Zeitzer J M, et al. A physiologically based mathematicalmodel of melatonin including ocular light suppression and interactions with the circadian pacemaker. J Pineal Res, 2007, 43: 294-304
[44]  38 Campbell S S, Kripke D F, Gillin J C, et al. Exposure to light in healthy elderly subjects and Alzheimer’s patients. Physiol Behav, 1988,42: 141-144
[45]  41 Cajochen C, Khalsa S B S, Wyatt J K, et al. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleeploss. Am J Physiol, 1999, 277: 640-649
[46]  42 Chang A M, Scheer F A, Czeisler C A, et al. Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history. Sleep, 2013, 36: 1239-1246
[47]  43 Belyavin A, Wright N A. Changes in electrical activity of the brain with vigilance. Electroencephalogr. Clin Neurophysiol, 1987, 66:137-144

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133