全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

膨胀性非饱和土中固-液相间的毛细与物理-化学作用的模型

DOI: 10.1360/csb2014-59-23-2290, PP. 2290-2300

Keywords: 膨胀性非饱和土,二元介质模型,吸附液相,毛细作用,物理-化学作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

膨胀性非饱和土中液相与固相基质间的相互作用,依据其形成机理不同,可分为毛细和物理-化学作用.然而,目前建立的非饱和土本构模型多是基于毛细机理提出的,忽略了后者对土体力学和水力行为的贡献.对于膨胀性非饱和土而言,固-液相间的物理-化学作用显著,并且致使土体具有复杂的行为特征.为了能够对膨胀性非饱和土的力学和水力行为进行全面、合理地解释和描述,本文建立了1个适用于膨胀性非饱和土的二元介质模型.首先,文中将膨胀性非饱和土抽象为由2个理想部分即理想毛细部分和理想黏吸部分组成,并且针对两者分别建立了理想模型.其次,利用参与函数反映土中2种理想部分所占的比重,以此描述实际情况下土体的力学和水力行为的特征.最后,利用该模型对膨胀性非饱和土在压缩和控制吸力情况下的力学和水力行为进行预测.通过模型预测结果和已有的试验数据的对比可知该模型能够较好地描述膨胀性非饱和土的行为.

References

[1]  1 Gens A, Alonso E E. A framework for the behaviour of unsaturated expansive clays. Can Geotech J, 1992, 29: 1013-1032
[2]  2 Coleman J D. Stress-strain relations for partly saturated soils. Géotechnique, 1962, 12: 348-350
[3]  3 Bishop A W, Blight G E. Some aspects of the effective stress in saturated and partially saturated soils. Géotechnique, 1963, 13: 177-197
[4]  4 Derjaguin B V, Churaev N V, Muller V M. Surface Forces. New York: Plenum Press, 1987
[5]  6 Fredlund D G, Rahardjo H. Soil Mechanics for Unsaturated Soils. New York: John Wiley & Sons, 1993
[6]  7 Gens A. Soil-environment interactions in geotechnical engineering. Géotechnique, 2010, 60: 3-74
[7]  8 Alonso E E, Gens A, Hight D W. Special problem soils: General report. In: 9th European Conference on Soil Mechanics and Foundation Engineering, Dublin, Ireland, 1987. 1087-1146
[8]  10 Nowamooz H. Swelling/shrinkage of compacted and natural clayey soils (in French). Dissertation for the Doctoral Degree. Nancy: National Polytechnic Institute of Lorraine, 2007
[9]  11 Chen R. Experimental study and constitutive modeling of stress-dependent coupled hydraulic hysteresis and mechanical behaviour of an unsaturated soil. Dissertation for the Doctoral Degree. Hong Kong: The Hong Kong University of Science and Technology, 2007
[10]  22 孙德安, 孙文静, 孟德林. 膨胀性非饱和土水力和力学性质的弹塑性模拟. 岩土工程学报, 2010, 32: 1505-1512
[11]  23 李舰, 赵成刚, 黄启迪. 膨胀性非饱和土的双尺度毛细-弹塑性变形耦合模型. 岩土工程学报, 2012, 34: 2127-2133
[12]  24 Desai C S, Ma Y. Modelling of joints and interfaces using the disturbed-state concept. Int J Numer Anal Meth Geomech, 1992, 16:623-653
[13]  25 吴刚. 工程材料的扰动状态本构模型(I)—扰动状态概念及其理论基础. 岩石力学与工程学报, 2002, 21: 759-765
[14]  26 卢再华, 陈正汉. 非饱和原状膨胀土的弹塑性损伤本构模型研究. 岩土工程学报, 2003, 25: 422-426
[15]  27 熊传祥, 龚晓南. 一种改进的软土结构性弹塑性损伤模型. 岩土力学, 2006, 27: 395-403
[16]  28 沈珠江, 邓刚. 超固结黏土的二元介质模型. 岩土力学, 2003, 24: 495-499
[17]  29 金旭. 非饱和原状土土-水特征曲线及本构模型的研究. 博士学位论文. 北京: 北京交通大学, 2010
[18]  30 陈正汉, 秦冰. 非饱和土的应力状态变量研究. 岩土力学, 2012, 33: 1-11
[19]  32 Houlsby G T. The work input to an unsaturated granular material. Géotechnique, 1997, 47: 193-196
[20]  33 Borja R I, Koliji A. On the effective stress in unsaturated porous continua with double porosity. J Mech Phys Solids, 2009, 57: 1182-1193
[21]  34 Zhao C G, Liu Y, Gao F P. Work and energy equations and the principle of generalized effective stress for unsaturated soils. Int J Numer Anal Meth Geomech, 2010, 34: 920-936
[22]  35 Cai G Q, Zhao C G, Liu Y, et al. A nonlinear multi-field coupled model for soils. Sci China: Tech Sci, 2011, 54: 1300-1314
[23]  36 Li J, Zhao C G, Cai G Q, et al. The input work expression and the thermodynamics-based modelling framework for unsaturated expansive soils with double porosity. Chin Sci Bull, 2013, 58: 3422-3429
[24]  37 Baker R, Frydman S. Unsaturated soil mechanics: Critical review of physical foundations. Engng Geol, 2009, 106: 26-39
[25]  38 刘艳. 非饱和土的广义有效应力原理及其本构模型研究. 博士学位论文. 北京: 北京交通大学, 2010
[26]  5 Tuller M, Or D, Dudley L M. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resour Res, 1999, 35: 1949-1964
[27]  9 Romero E, Gens A, Lloret A. Water permeability, water retention and microstructure of unsaturated compacted boom clay. Engng Geol,1999, 54: 117-127
[28]  12 Wheeler S J, Sharma R S, Buisson M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils. Géotechnique,2003, 53: 41-54
[29]  13 Sheng D, Sloan S W, Gens A. A constitutive model for unsaturated soils: Thermomechanical and computational aspects. Comput Mech,2004, 33: 453-465
[30]  14 Liu Y, Zhao C G, Cai G Q, et al. Constitutive modeling for unsaturated soils considering gas hardening effect. Chin Sci Bull, 2011, 56:1739-1745
[31]  15 Cai G Q, Zhao C G, Liu Y, et al. Volume change behaviour of unsaturated soils under non-isothermal conditions. Chin Sci Bull, 2011, 56:2495-2504
[32]  16 Lu N, Likos W J. Suction stress characteristic curve for unsaturated soil. J Geotech Geoenviron Eng, 2006, 132: 131-142
[33]  17 Alonso E E, Romero E, Hoffmann C. Hydrome-chanical behaviour of compacted granular expansive mixtures: Experimental and constitutive study. Géotechnique, 2011, 61: 329-344
[34]  18 Gens A, Valleján B, Sánchez M, et al. Hydromechanical behaviour of a heterogeneous compacted soil: Experimental observations and modeling. Géotechnique, 2011, 61: 367-386
[35]  19 Alonso E E, Vaunat J, Gens A. Modelling the mechanical behaviour of expansive clays. Engng Geol, 1999, 54: 173-183
[36]  20 卢再华, 王权民, 陈正汉. 非饱和膨胀土本构模型的试验研究及分析. 地下空间, 2001, 21: 379-385
[37]  21 曹雪山. 非饱和膨胀土的弹塑性本构模型研究. 岩土工程学报, 2005, 27: 832-836
[38]  31 Zhao C G, Liu Z Z, Cai G Q. The principle of effective stress in unsaturated soil mechanics and its limitations. In: the 6th International Conference on Unsaturated Soils, Sydney, Australia, 2014. 167-175

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133