9 Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O+CO2?H++HCO3 -. Geochim Cosmochim Acta, 1997, 61: 2879-2889
[3]
13 Zhang J L, Wang H J, Liu Z H, et al. Spatial-temporal variations of travertine deposition rates and their controlling factors in Huanglong Ravine, China—a world's heritage site. Appl Geochem, 2012, 27: 211-222
[4]
14 Yan H, Sun H L, Liu Z H. Equilibrium vs. kinetic fractionation of oxygen isotopes in the two low-temperature travertine-depositing systems with distinct hydrodynamic conditions at Baishuitai, Yunnan, SW China. Geochim Cosmochim Acta, 2012, 95: 63-78
[5]
15 Wang H J, Yan H, Liu Z H. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations. Geochim Cosmochim Acta, 2014, 125: 34-48
[6]
16 Liu Z H, Li H C, You C F, et al. Thickness and stable isotopic characteristics of modern seasonal climate-controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, SW China: Implications for paleoclimate reconstruction. Environ Geol, 2006, 51:257-265
[7]
17 Liu Z H, Sun H L, Lu B Y, et al. Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine- depositing canal at Baishuitai, Yunnan, SW China: Implications for the formation of biannual laminae in travertine and for climatic reconstruction. Chem Geol, 2010, 273: 258-266
[8]
19 Kano A, Kawai T, Matsuoka J, et al. High-resolution records of rainfall events from clay bands in tufa. Geology, 2004, 32: 793-796
[9]
20 Kano A, Hagiwara R, Kawai T, et al. Climatic conditions and hydrological change recorded in a high-resolution stable-isotope profileof a recent laminated tufa on a subtropical island, southern Japan. J Sediment Res, 2007, 77: 59-67
[10]
21 O'Brien G R, Kaufman D S, Sharp W D, et al. Oxygen isotope composition of annually banded modern and mid-Holocene travertine and evidence of paleomonsoon floods, Grand Canyon, Arizona, USA. Quat Res, 2006, 65: 366-379
[11]
22 Lojen S, Trkov A, ??an?ar J, et al. Continuous 60-year stable isotopic and earth-alkali element records in a modern laminated tufa (Jaruga, river Krka, Croatia): Implications for climate reconstruction. Chem Geol, 2009, 258: 242-250
[12]
24 Pentecost A, Zhang Z. A review of Chinese travertines. Cave Karst Sci, 2001, 28: 15-28
[13]
31 Ali A A, Terral J F, Guendon J L, et al. Holocene palaeoenvironmental changes in southern France: A palaeobotanical study of travertine (tufa) at St-Antonin, Bouches-du-Rhone. Holocene, 2003, 13: 293-298
[14]
32 Garnett E R, Andrews J E, Preece R C, et al. Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa. J Quat Sci, 2004, 19: 251-262
[15]
33 Makhnach N, Zernitskaja V, Kolosov I, et al. Stable oxygen and carbon isotopes in Late Glacial-Holocene freshwater carbonates from Belarus and their palaeoclimatic implications. Paleogeogr Paleoclimat Paleoecol, 2004, 209: 73-101
[16]
34 Smith J R, Giegengack R, Schwarcz H P. Constraints on Pleistocene pluvial climates through stable-isotope analysis of fossil-spring tufas and associated gastropods, Kharga Oasis, Egypt. Paleogeogr Paleoclimatol Paleoecol, 2004, 206: 157-175
[17]
35 Moeyersons J, Nyssen J, Poesen J, et al. Age and backfill/overfill stratigraphy of two tufa dams, Tigray Highlands, Ethiopia: Evidence for Late Pleistocene and Holocene wet conditions. Paleogeogr Paleoclimatol Paleoecol, 2006, 230: 165-181
[18]
36 Candy I, Schreve D. Land-sea correlation of Middle Pleistocene temperate sub-stages using high-precision uranium-series dating of tufa deposits from southern England. Quat Sci Rev, 2007, 26: 1223-1235
[19]
37 Ortiz J E, Torres T, Delgado A, et al. A review of the Tagus river tufa deposits (central Spain): Age and palaeoenvironmental record. Quat Sci Rev, 2009, 28: 947-963
[20]
38 Cremaschi M, Zerboni A, Sp?tl C, et al. The calcareous tufa in the Tadrart Acacus Mt. (SW Fezzan, Libya): An early Holocene palaeoclimate archive in the central Sahara. Paleogeogr Paleoclimatol Paleoecol, 2010, 287: 81-94
[21]
39 Dominguez-Villar D, Vazquez-Navarro J A, Cheng H, et al. Freshwater tufa record from Spain supports evidence for the past interglacial being wetter than the Holocene in the Mediterranean region. Glob Planet Change, 2011, 77: 129-141
[22]
40 Dabkowski J, Limondin-Lozouet N, Antoine P, et al. Climatic variations in MIS 11 recorded by stable isotopes and trace elements in a French tufa (La Celle, Seine Valley). J Quat Sci, 2012, 27: 790-799
[23]
41 Osácar M C, Arenas C, Vázquez-Urbez M, et al. Environmental factors controlling the δ13C and δ18O variations of recent fluvial tufas: A12-year record from the Monasterio de Piedra Natural Park (Ne Iberian Peninsula). J Sediment Res, 2013, 83: 309-322
43 Hancock P L, Chalmers R M L, Altunel E, et al. Travitonics: Using travertines in active fault studies. J Struct Geol, 1999, 21: 903-916
[26]
48 Brogi A, Capezzuoli E, Aqué R, et al. Studying travertines for neotectonics investigations: Middle-Late Pleistocene syn-tectonic travertine deposition at Serre di Rapolano (Northern Apennines, Italy). Int J Earth Sci, 2010, 99: 1383-1398
[27]
49 Selim H H, Yanik G. Development of the Cambazl?(Turgutlu/MANISA) fissure-ridge-type travertine and relationship with active tectonics, Gediz Graben, Turkey. Quat Int, 2009, 199: 157-163
[28]
50 Temiz U, Gokten E, Eikenberg J. U/Th dating of fissure ridge travertines from the Kirsehir region (Central Anatolia Turkey): Structural relations and implications for the neotectonic development of the Anatolian block. Geodin Acta, 2009, 22: 201-213
[29]
51 Temiz U, Gokten Y E, Eikenberg J, et al. Strike-slip deformation and U/Th dating of travertine deposition: Examples from North Anatolian Fault Zone, Bolu and Yenicag Basins, Turkey. Quat Int, 2013, 312: 132-140
[30]
52 De Filippis L, Faccenna C, Billi A, et al. Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth-Sci Rev, 2013, 123: 35-52
[31]
53 Van Noten K, Claes H, Soete J, et al. Fracture networks and strike-slip deformation along reactivated normal faults in Quaternary travertine deposits, Denizli Basin, western Turkey. Tectonophysics, 2013, 588: 154-170
[32]
65 Coplen T B. Calibration of the calcite-water oxygen isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim Cosmochim Acta, 2007, 71: 3948-3957
[33]
66 Watson E B. A conceptual model for near-surface kinetic controls on the trace element and stable isotope composition of abiogenic calcite crystals. Geochim Cosmochim Acta, 2004, 68: 1473-1488
[34]
67 Dreybrodt W, Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chem Geol, 1991, 90: 107-122
[35]
68 Plummer L N, Wigley T M L, Parkhurst D L. The kinetics of calcite dissolution in CO2-water systems at 5-60℃ and 0.0-1.0 atm CO2. Am J Sci, 1978, 278: 179-216
[36]
71 Reddy M M, Nancolla G H. Calcite crystal-growth inhibition by phosphonates. Desalination, 1973, 12: 61-73
[37]
75 Plant L J, House W A. Precipitation of calcite in the presence of inorganic phosphate. Colloid Surface A, 2002, 203: 143-153
[38]
76 Lin Y P, Singer P C, Aiken G R. Inhibition of calcite precipitation by natural organic material: Kinetics, mechanism, and thermodynamics. Environ Sci Tech, 2005, 39: 6420-6428
[39]
77 Lin Y P, Singer P C. Inhibition of calcite precipitation by orthophosphate: Speciation and thermodynamic considerations. Geochim Cosmochim Acta, 2006, 70: 2530-2539
[40]
78 Li H, Xu X, Ku T, et al. Isotopic and geochemical evidence of palaeoclimate changes in Salton Basin, California, during the past 20 kyr: 1.δ18O and δ13C records in lake tufa deposits. Paleogeogr Paleoclimatol Paleoecol, 2008, 259: 182-197
[41]
79 Prado-Perez A J, Huertas A D, Crespo M T, et al. Late Pleistocene and Holocene mid-latitude palaeoclimatic and palaeoenvironmental reconstruction: An approach based on the isotopic record from a travertine formation in the Guadix-Baza basin, Spain. Geol Mag, 2013,150: 602-625
[42]
80 Hudson A M, Quade J. Long-term east-west asymmetry in monsoon rainfall on the Tibetan Plateau. Geology, 2013, 41: 351-354
[43]
81 Srdoc D, Osmond J K, Horvatincic N, et al. Radiocarbon and uranium-series dating of the Plitvice lakes travertines. Radiocarbon, 1994,36: 203-219
[44]
82 Lin J C, Broecker W S, Hemming S R, et al. A reassessment of U-Th and C-14 ages for late-glacial high-frequency hydrological events at Searles Lake, California. Quat Res, 1989, 49: 11-23
[45]
83 Auler A S, Smart P L. Late quaternary paleoclimate in semiarid northeastern Brazil from U-Series dating of travertine and water-table speleothems. Quat Res, 2001, 55: 159-167
[46]
84 Sierralta M, Sandor K, Melcher F, et al. Uranium-series dating of travertine from Sutto: Implications for reconstruction of environmental change in Hungary. Quat Int, 2010, 222: 178-193
[47]
86 Valero-Garces B L, Delgado-Huertas A, Ratto N, et al. Large C-13 enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina. Earth Planet Sci Lett, 1999, 171: 253-266
[48]
1 Andrews J E, Brasier A T. Seasonal records of climatic change in annually laminated tufas: Short review and future prospects. J Quat Sci,2005, 20: 411-421
[49]
2 Andrews J E. Palaeoclimatic records from stable isotopes in riverine tufas: Synthesis and review. Earth-Sci Rev, 2006, 75: 85-104
[50]
3 Pentecost A. The Quaternary travertine deposits of Europe and Asia Minor. Quat Sci Rev, 1995, 14: 1005-1028
[51]
4 Ford T D, Pedley H M. A review of tufa and travertine deposits of the world. Earth-Sci Rev, 1996, 41: 117-175
[52]
5 Liu Z, Zhang M, Li Q, et al. Hydrochemical and isotope characteristics of spring water and travertine in the Baishuitai area (SW China) and their meaning for paleoenvironmental reconstruction. Environ Geol, 2003, 44: 698-704
8 Liu Z, Svensson U, Dreybrodt W, et al. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction of deposition rates. Geochim Cosmochim Acta, 1995, 59: 3087-3097
[55]
10 Matsuoka J, Kano A, Oba T, et al. Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW Japan. Earth Planet Sci Lett, 2001, 192: 31-44
[56]
11 Sun H L, Liu Z H. Wet-dry seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic and paleoenvironmental implications. Geochim Cosmochim Acta, 2010, 74: 1016-1029
[57]
12 Liu Z H, Sun H L, Li H C, et al. δ13C, δ18O and deposition rate of tufa in Xiangshui River, SW China: Implications for land-cover change caused by climate and human impact during the late Holocene. Geol Soc London Spec Pub, 2011, 352: 85-96
[58]
18 Kano A, Matsuoka J, Kojo T, et a1. Origin of annual laminations in tufa deposits, southwest Japan. Paleogeogr Paleoclimatol Paleoecol,2003, 191: 243-262
[59]
23 McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat Sci Rev, 2004, 23: 901-918
27 Mesci B L, Gursoy H, Tatar O. The evolution of travertine masses in the Sivas area (Central Turkey) and their relationships to active tectonics. Turk J Earth Sci, 2008, 17: 219-240
[63]
28 Weinstein-Evron M. Palynology of Pleistocene travertines (tufa) from the Arava Valley, Israel. Quat Res, 1987, 27: 82-88
[64]
29 Pazdur A, Pazdur M F, Starkel L, et al. Stable isotopes of Holocene calcareous tufa in southern Poland as palaeoclimatic indicators. Quat Res, 1988, 30: 177-189
44 D’Alessandro W, Giammanco S, Bellomo S, et al. Geochemistry and mineralogy of travertine deposits of the SW flank of Mt. Etna (Italy): Relationships with past volcanic and degassing activity. J Volcanol Geotherm Res, 2007, 165: 64-70
[67]
45 Uysal I T, Feng Y, Zhao J X, et al. U-series dating and geochemical tracing of late Quaternary travertine in co-seismic fissures. Earth Planet Sci Lett, 2007, 257: 450-462
[68]
46 Faccenna C, Soligo M, Billi A, et al. Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, Central Italy): Possible influence of climate and fault activity. Glob Planet Change, 2008, 63: 299-308
[69]
47 Brogi A, Capezzuoli E. Travertine deposition and faulting: The fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). Int J Earth Sci, 2009, 98: 931-947
[70]
54 Branner J C. The origin of travertine falls and reefs. Science, 1901, 14: 184-185
[71]
55 Dreybrodt W, Buhmann D, Michaelis J, et al. Geochemically controlled calcite precipitation by CO2 outgassing: Field measurements of precipitation rates in comparison to theoretical predictions. Chem Geol, 1992, 97: 285-294
[72]
56 Hoffer-French K J, Herman J S. Evaluation of hydrological and biological influences on CO2 fluxes from a karst stream. J Hydrol, 1989,108: 189-212
[73]
57 Amundson R, Kelly E. The chemistry and mineralogy of a CO2-rich travertine depositing spring in the California Coast Range. Geochim Cosmochim Acta, 1987, 51: 2883-2890
[74]
58 Clark I D, Fontes J C, Fritz P. Stable isotope disequilibria in travertine from high pH waters-laboratory investigations and field observations from Oman. Geochim Cosmochim Acta, 1992, 56: 2041-2050
[75]
59 Goudie A S, Viles H A, Pentecost A. The late-Holocene tufa decline in Europe. Holocene, 1993, 3: 181-186
[76]
60 Friedman I. Some investigations of the deposition of travertine from hot springs-I. The isotopic chemistry of a travertine-depositing spring. Geochim Cosmochim Acta, 1970, 34: 1303-1315
[77]
61 Gonfiantini R, Panichi C, Tongiorgi E. Isotopic disequilibrium in travertine deposition. Earth Planet Sci Lett, 1968, 5: 55-58
[78]
62 Kele S, Demény A, Siklósy Z, et al. Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: Depositional facies and non-equilibrium fractionation. Sediment Geol, 2008, 211: 53-72
[79]
63 Sun H, Liu Z, Yan H. Oxygen isotope fractionation in travertine-depositing pools at Baishuitai, Yunnan, SW China: Effects of deposition rates. Geochim Cosmochim Acta, 2014, 133: 340-350
[80]
64 Kim S T, O’Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta, 1997,61: 3461-3475
[81]
69 Levich V G. Phsiochemical Hydrodynamics. Englewood: Prentice-Hall, 1962. 1-700
[82]
70 Kern M D. The hydration of carbon dioxide. J Chem Edu, 1960, 37: 14-23
[83]
72 House W A. Inhibition of calcite crystal-growth by inorganic-phosphate. J Coll Int Sci, 1987, 119: 505-511
[84]
73 Dove P M, Hochella M F. Calcite precipitation mechanisms and inhibition by orthophosphate: in-situ observations by scanning force microscopy. Geochim Cosmochim Acta, 1993, 57: 705-714
[85]
74 Lebron I, Suarez D L. Calcite nucleation and precipitation kinetics as affected by dissolved organic matter at 25℃ and pH > 7.5. Geochim Cosmochim Acta, 1996, 60: 2765-2776
[86]
85 Quinif Y. U/Th dating of the Annevoie-Rouillon travertines. Geol Belg, 2012, 15: 165-168