全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

宝天曼自然保护区不同生活型物种与土壤相关性分析

DOI: 10.1360/N972014-00323, PP. 2367-2376

Keywords: 土壤理化性质,方差分解,广义可加模型,不同生活型物种,物种共存

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物群落更新过程受森林垂直结构的影响,而土壤是群落更新演替过程中的重要影响因素.本研究以宝天曼自然保护区1hm2固定监测样地调查数据为依托,采用方差分解(RDA)分析了表层土、深层土与不同生活型物种分布的关系,并对两层土壤理化性质进行主成分分析(PCA),通过广义可加模型(GAM)拟合了乔木、小乔木、灌木中主要物种分布与主成分分析中各主分量的关系.结果表明(ⅰ)表层土、深层土共同解释了全部物种、乔木、小乔木、灌木分布的40.52%,40.46%,37.17%,42.14%,其中表层土壤独立解释了14.68%,17.32%,10.61%,14.34%,深层土壤独立解释了18.24%,17.22%,18.8%,18.84%;(ⅱ)15个土壤理化性质主成分分析表明,前4个主分量分别代表了38.02%,14.41%,9.06%,5.79%,累计贡献率达67.28%;(ⅲ)GAM拟合结果显示,不同生活型物种与4个主分量相关程度不同,乔木层D2介于0.63%~9.07%,小乔木层D2介于1.41%~29.93%,灌木层D2介于1.91%~15.53%.本研究结果支持物种共存机制中的生态位理论,土壤理化性质对宝天曼物种分布具有重要影响;表层土养分含量大于深层土,但并不意味着对物种的作用也大于深层土,在今后研究中要结合物种自身特性,重视深层土壤理化性质对物种分布的作用;不同物种以及不同生活型物种对土壤等资源的利用存在差异,这种差异促进了物种的共存.

References

[1]  1 Carter M R, Gregorich E G, Anderson D W, et al. Concepts of soil quality and their significance. Dev Soil Sci, 1997, 25: 1-19
[2]  2 Nihlg?rd B. Pedological influence of spruce planted on former beech forest soils in Scania, South Sweden. Oikos, 1971, 302-314
[3]  3 宁亚军, 陈世苹, 钱海源, 等. 浙江古田山亚热带常绿阔叶林不同干扰强度下土壤呼吸的日动态与季节变化. 科学通报, 2013, 58:3839-3848
[4]  4 Ehrenfeld J G, Ravit B, Elgersma K. Feedback in the plant-soil system. Annu Rev Environ Resour, 2005, 30: 75-115
[5]  7 Zhou G, Liu S, Li Z, et al. Old-growth forests can accumulate carbon in soils. Science, 2006, 314: 1417
[6]  8 Zhang L, Mi X, Shao H, et al. Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant Soil, 2011, 347:211-220
[7]  9 Chang L W, Zeleny D, Li C F, et al. Better environmental data may reverse conclusions about niche-and dispersal-based processes in community assembly. Ecology, 2013, 94: 2145-2151
[8]  10 Thomaes A, De Keersmaeker L, De Schrijver A, et al. Can soil acidity and light help to explain tree species effects on forest herb layer performance in post-agricultural forests? Plant Soil, 2013, 373: 183-199
[9]  16 Li Y, Yang F, Ou Y, et al. Changes in forest soil properties in different successional stages in lower tropical China. PLoS One, 2013, 8: e81359
[10]  17 McKane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 2002, 415: 68-71
[11]  22 Richard C. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Michigan: Springer, 1998. 1-224
[12]  23 Legendre P, Mi X, Ren H, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 2009, 90: 663-674
[13]  24 John R, Dalling J W, Harms K E, et al. Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci USA, 2007,104: 864-869
[14]  25 鲍士旦. 土壤农化分析. 第3 版. 北京: 中国农业出版社, 2005. 355-356
[15]  28 Smith T W, Lundholm J T. Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 2010, 33:648-655
[16]  29 Oksanen J, Blanchet D, Kindt R, et al. Vegan: Community Ecology Package. R package version 1, 2010
[17]  43 Wilson J B. Shoot competition and root competition. J Appl Ecol, 1988, 279-296
[18]  44 Bengtsson J, Fagerstrom T, Rydin H. Competition and coexistence in plant-communities. Trends Ecol Evol, 1994, 9: 246-250
[19]  45 Nakashizuka T. Species coexistence in temperate, mixed deciduous forests. Trends Ecol Evol, 2001, 16: 205-210
[20]  46 Wright S J. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 2002, 130: 1-14
[21]  47 Connell J H. Diversity in tropical rain forests and coral reefs. Science, 1978, 199: 1302-1310
[22]  48 Whitfield J. Ecology: Neutrality versus the niche. Nature, 2002, 417: 480-481
[23]  5 Kardol P, Martijn Bezemer T, Van Der Putten W H. Temporal variation in plant-soil feedback controls succession. Ecol Lett, 2006, 9:1080-1088
[24]  6 Toriyama J, Ohta S, Araki M, et al. Soils under different forest types in the dry evergreen forest zone of Cambodia: Morphology, physicochemical properties, and classification. In: Sawada H, Araki M, Chappell N A, et al., eds. Forest Environments in the Mekong River Basin. Tokyo: Springer, 2007. 241-253
[25]  11 Waltz A E M, Fulé P Z, Covington W W, et al. Diversity in ponderosa pine forest structure following ecological restoration treatments. Forest Sci, 2003, 49: 885-900
[26]  12 Harrod R J, McRae B H, Hartl W E. Historical stand reconstruction in ponderosa pine forests to guide silvicultural prescriptions. Forest Ecol Manag, 1999, 114: 433-446
[27]  13 Homyack J A, Harrison D J, Krohn W B. Structural differences between precommercially thinned and unthinned conifer stands. Forest Ecol Manag, 2004, 194: 131-143
[28]  14 Haidari M, Namiranian M, Gahramani L, et al. Study of vertical and horizontal forest structure in Northern Zagros Forest (Case study: West of Iran, Oak forest). Eur J Exp Biol, 2013, 3: 268-278
[29]  15 Yuan Z, Gazol A, Wang X, et al. What happens below the canopy? Direct and indirect influences of the dominant species on forest vertical layers. Oikos, 2012, 121: 1145-1153
[30]  18 Wijesinghe D K, John E A, Hutchings M J. Does pattern of soil resource heterogeneity determine plant community structure? An experimental investigation. J Ecol, 2005, 93: 99-112
[31]  19 王鹏, 牟溥, 李云斌. 植物根系养分捕获塑性与根竞争. 植物生态学报, 2012, 36: 1184-1196
[32]  20 Nakashizuka T. Species coexistence in temperate, mixed deciduous forests. Trends Ecol Evol, 2001, 16: 205-210
[33]  21 尚富德, 王磐基, 冯广平, 等. 伏牛山南北自然过渡地带植物多样性的特征及其成因分析. 河南大学学报, 1998, 28: 54-60
[34]  26 苏姝. 普通克里格法在空间内插中的应用. 江南大学学报, 2004, 3: 19-21
[35]  27 Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology, 1992, 73: 1045-1055
[36]  30 王盛萍, 张志强, 张建军, 等. 黄土残塬沟壑区流域次生植被物种分布的地形响应. 生态学报, 2010, 30: 6102-6112
[37]  31 Trevor Hastie. Package “gam”, 2013. http://web.stanford.edu/~hastie/swData.htm
[38]  32 袁志良, 陈云, 韦博良, 等. 暖温带-北亚热带生态过渡区物种生境相关性分析. 生态学报, 2013, 33: 7819-7826
[39]  33 殷卫抗, 袁志良, 王亚平, 等. 宝天曼锐齿栎林土壤空间异质性的相关分析. 河南农业大学学报, 2013, 47: 278-283
[40]  34 Long Y, Kong D, Chen Z, et al. Variation of the linkage of root function with root branch order. PLoS One, 2013, 8: e57153
[41]  35 Schenk H J, Jackson R B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol, 2002, 90: 480-494
[42]  36 Schenk H J, Jackson R B. The global biogeography of roots. Ecol Monogr, 2002, 72: 311-328
[43]  37 Einsmann J C, Jones R H, Pu M, et al. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J Ecol, 1999, 87:609-619
[44]  38 Kembel S W, Cahill Jr J F. Plant phenotypic plasticity belowground: A phylogenetic perspective on root foraging trade-offs. Am Nat,2005, 166: 216-230
[45]  39 Kembel S W, De Kroon H, Cahill J F, et al. Improving the scale and precision of hypotheses to explain root foraging ability. Ann Bot,2008, 101: 1295-1301
[46]  40 Eissenstat D M, Caldwell M M. Seasonal timing of root growth in favorable microsites. Ecology, 1988, 69: 870-873
[47]  41 Mommer L, Visser E J W, van Ruijven J, et al. Contrasting root behaviour in two grass species: A test of functionality in dynamic heterogeneous conditions. Plant Soil, 2011, 344: 347-360
[48]  42 Wijesinghe D K, John E A, Beurskens S, et al. Root system size and precision in nutrient foraging: Responses to spatial pattern of nutrient supply in six herbaceous species. J Ecol, 2001, 89: 972-983
[49]  49 Debski I, Burslem D F R P, Palmiotto P A, et al. Habitat preferences of Aporosa in two Malaysian forests: Implications for abundance and coexistence. Ecology, 2002, 83: 2005-2018
[50]  50 Potts M D, Ashton P S, Kaufman L S, et al. Habitat patterns in tropical rain forests: A comparison of 105 plots in northwest Borneo. Ecology, 2002, 83: 2782-2797

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133