全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

长白山阔叶红松林木本植物系统发育与功能性状结构

DOI: 10.1360/N972014-00291, PP. 2342-2348

Keywords: 空间尺度,阔叶红松林,功能性状结构,系统发育结构,生态过程

Full-Text   Cite this paper   Add to My Lib

Abstract:

群落构建一直是群落生态学研究的热点问题之一.以性状差异、亲缘关系等为载体的物种相似性方面的研究,能更好地反映群落格局形成的生态学过程.本文以长白山25hm2森林监测样地内DBH≥1cm的50种木本植物为研究对象,收集了各树种木材密度、最大树高、叶面积、比叶面积、叶片氮含量和磷含量等6种功能性状数据,构建了物种间的系统发育结构,使用K值法检验各个功能性状的系统发育信号,并在不同空间尺度上(10,20,40,60,80和100m)使用最近亲缘指数(NTI)分析了群落系统发育和功能性状的结构,推断其潜在的生态过程.研究结果表明(1)所有6个植物功能性状都具有显著的系统发育信号,表明该森林木本植物的功能性状受系统发育历史的影响;(2)单个功能性状的群落结构具有明显的尺度效应,在小空间尺度上,叶面积、最大树高表现为聚集,而木材密度、叶片磷含量、叶片氮含量和比叶面积则为发散;在大空间尺度上各功能性状主要呈聚集或随机结构;(3)群落的系统发育与功能性状结构具有明显的尺度效应,在小尺度上(

References

[1]  1 Hutchinson G E. Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat, 1959, 93: 145
[2]  4 Chase J M. Community assembly: When should history matter? Oecologia, 2003, 136: 489-498
[3]  6 Chave J. Neutral theory and community ecology. Ecol Lett, 2004, 7: 241-53
[4]  7 Wiegand T, Martínez I, Huth A. Recruitment in tropical tree species: Revealing complex spatial patterns. Am Nat, 2009, 174: E106-E140
[5]  8 MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. Am Nat, 196,: 377-385
[6]  14 Webb C O. Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. Am Nat, 2000, 156:145-155
[7]  15 Cavender-Bares J, Keen A, Miles B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology, 2006, 87: S109-S122
[8]  16 Slingsby J A, Verboom G A. Phylogenetic relatedness limits co-occurrence at fine spatial scales: Evidence from the Schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. Am Nat, 2006, 168: 14-27
[9]  24 郝占庆, 李步杭, 张健, 等. 长白山阔叶红松林样地(CBS), 群落组成与结构. 植物生态学报, 2008, 32: 238-250
[10]  26 Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA, 2004, 101:11001-11006
[11]  28 Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecol Lett, 2009, 12: 351-366
[12]  29 Moles A T, Warton D I, Warman L, et al. Global patterns in plant height. J Ecol, 2009, 97: 923-932
[13]  30 Webb C O, Donoghue M J. Phylomatic: Tree assembly for applied phylogenetics. Mol Ecol Notes, 2005, 5: 181-183
[14]  38 Kembel S W, Cowan P D, Helmus M R, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 2010, 26:1463-1464
[15]  39 Herben T, Goldberg D E. Community assembly by limiting similarity vs. competitive hierarchies: Testing the consequences of dispersion of individual traits. J Ecol, 2014, 102: 156-166
[16]  40 Grime J P. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J Veget Sci, 2006,17: 255-260
[17]  41 Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol, 2001, 15: 423-434
[18]  43 HilleRisLambers J, Adler P B, Harpole W S, et al. Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst, 2012, 43: 227
[19]  44 Tieleman B I, Williams J B, Bloomer P. Adaptation of metabolism and evaporative water loss along an aridity gradient. Proc R Soc London Series B Biol Sci, 2003, 270: 207-214
[20]  45 Ackerly D D. Adaptation, niche conservatism, and convergence: Comparative studies of leaf evolution in the California chaparral. Am Nat,2004, 163: 654-671
[21]  46 Laurin M. The evolution of body size, Cope’s rule and the origin of amniotes. Syst Biol, 2004, 53: 594-622
[22]  47 裴男才, 张金龙, 米湘成, 等. 植物 DNA 条形码促进系统发育群落生态学发展. 生物多样性, 2011, 19: 284-294
[23]  48 Kress W J, Erickson D L, Jones F A, et al. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA, 2009, 106: 18621-18626
[24]  2 Diamond J M. Assembly of species communities. Ecol Evol Comm, 1975, 342: 444
[25]  3 Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst, 2000, 31: 343-366
[26]  5 Vellend M. Conceptual synthesis in community ecology. Quart Rev Biol, 2010, 85: 183-206
[27]  9 Tilman D. Competition and biodiversity in spatially structured habitats. Ecology, 1994, 75: 2-16
[28]  10 Hubbell S P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton: Princeton University Press, 2001
[29]  11 Wang X, Swenson N G, Wiegand T, et al. Phylogenetic and functional diversity area relationships in two temperate forests. Ecography,2013, 36: 883-893
[30]  12 Kraft N J B, Ackerly D D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monog, 2010, 80: 401-422
[31]  13 Swenson N G, Erickson D L, Mi X, et al. Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 2012, 93: S112-S125
[32]  17 Yang J, Zhang G, Ci X, et al. Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Funct Ecol, 2014, 28: 520-529
[33]  18 黄建雄, 郑凤英, 米湘成. 不同尺度上环境因子对常绿阔叶林群落的谱系结构的影响. 植物生态学报, 2010, 34: 309-315
[34]  19 Lebrija-Trejos E, Pérez-García E A, Meave J A, et al. Functional traits and environmental filtering drive community assembly in a species- rich tropical system. Ecology, 2010, 91: 386-398
[35]  20 Kraft N J B, Valencia R, Ackerly D D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 2008,322: 580-582
[36]  21 Swenson N G, Enquist B J. Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 2009, 90: 2161-2170
[37]  22 Webb C O, Ackerly D D, McPeek M A, et al. Phylogenies and community ecology. Annu Rev Ecol Syst, 2002, 33: 475-505
[38]  23 郝占庆, 郭水良, 曹同. 长白山植物多样性及其格局. 沈阳: 辽宁科学技术出版社, 2002
[39]  25 Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aus J Bot, 2003, 51: 335-380
[40]  27 Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827
[41]  31 Wikstr?m N, Savolainen V, Chase M W. Evolution of the angiosperms: Calibrating the family tree. Proc R Soc London Ser B Biol Sci,2001, 268: 2211-2220
[42]  32 Webb C O, Ackerly D D, Kembel S W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 2008, 24: 2098-2100
[43]  33 Blomberg S P, Garland T, Ives A R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution,2003, 57: 717-745
[44]  34 Cavender-Bares J, Ackerly D D, Baum D A, et al. Phylogenetic overdispersion in Floridian oak communities. Am Nat, 2004, 163: 823-843
[45]  35 Cavender-Bares J, Kitajima K, Bazzaz F A. Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr, 2004, 74: 635-862
[46]  36 Kembel S W, Hubbell S P. The phylogenetic structure of a neotropical forest tree community. Ecology, 2006, 87: S86-S99
[47]  37 Swenson N G, Enquist B J, Pither J, et al. The problem and promise of scale dependency in communityphylogenetics. Ecology, 2006, 87:2418-2424
[48]  42 Suding K N, Collins S L, Gough L, et al. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA, 2005, 102: 4387-4392

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133