全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

小兴安岭凉水谷地云冷杉林群落组成与空间格局

DOI: 10.1360/N972014-00072, PP. 2377-2387

Keywords: 谷地云冷杉林,群落组成与结构,空间分布格局,密度制约

Full-Text   Cite this paper   Add to My Lib

Abstract:

谷地云冷杉林是小兴安岭地区谷地的顶极群落,在我国温带植被类型中占有重要地位.本研究基于凉水谷地云冷杉林9.12hm2动态监测样地,分析了群落物种组成和径级结构,并运用点格局方法分析16个主要物种不同生活史阶段的空间分布格局,探讨密度制约效应在优势种不同生活史阶段所发挥的作用.结果表明(1)样地内木本植物共有44种,胸径1cm的独立个体35656株,隶属于14科29属;(2)林冠层、林下层树种和优势种冷杉与红皮云杉的径级分布均呈倒“J”型,灌木层的径级分布呈“L”型;(3)主要物种幼树Ⅰ(1cm胸径5m时,随着径级增大,这种额外的聚集逐渐减小,说明密度制约效应起作用.

References

[1]  1 李文华. 小兴安岭谷地云冷杉林群落结构和演替的研究. 自然资源, 1980, 4: 17-29
[2]  8 Plotkin J B, Chave J, Ashton P S. Cluster analysis of spatial patterns in Malaysian tree species. Am Nat, 2002, 160: 629-644
[3]  13 Wright J S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 2002, 130: 1-14
[4]  14 Bell T, Freckleton R P, Lewis O T. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol Lett, 2006, 9:569-574
[5]  15 Zhu Y, Mi X, Ren H, et al. Density dependence is prevalent in a heterogeneous subtropical forest. Oikos, 2010, 119: 109-119
[6]  16 Lambers J H R, Clark J S, Beckage B. Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 2002, 417:732-735
[7]  19 Condit R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Heidelberg: Springer, 1998. 177-201
[8]  20 Mueller-Dombois D, Ellenberg H. Aims and Methods of Vegetation Ecology. New York: John Wiley, 1974
[9]  23 Ripley B D. Modelling spatial patterns. J R Stat Soc B (Methodological), 1977, 39: 172-212
[10]  24 Stoyan D, Stoyan H. Fractals, Random Shapes, and Point Fields: Methods of Geometrical Statistics. Chichester: Wiley, 1994
[11]  25 Moeur M. Spatial models of competition and gap dynamics in old-growth Tsuga heterophylla/Thuja plicata forests. Forest Ecol Manag,1997, 94: 175-186
[12]  26 Diggle P J, Chetwynd A G. Second-order analysis of spatial clustering for inhomogeneous populations. Biometrics, 1991: 1155-1163
[13]  32 徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构. 生物多样性, 2012, 20: 470-481
[14]  33 Chase J M. Community assembly: When should history matter? Oecologia, 2003, 136: 489-498
[15]  2 《中国森林》编辑委员会. 中国森林. 第二卷. 北京: 中国林业出版社, 1999
[16]  3 金光泽, 刘志理, 蔡慧颖, 等. 小兴安岭谷地云冷杉林粗木质残体的研究. 自然资源学报, 2009, 24: 1256-1266
[17]  4 He F, Pierre L, James V L. Distribution patterns of tree species in a Malaysian tropical rain forest. J Veg Sci, 1997, 8: 105-114
[18]  5 Dale M R T. Spatial pattern analysis in plant ecology. J Ecol, 2000, 88: 366-370
[19]  6 Perry J N, Liebhold A M, Rosenberg M S, et al. Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography, 2002, 25: 578-600
[20]  7 Getzin S, Wiegand T, Wiegand K, et al. Heterogeneity influences spatial patterns and demographics in forest stands. J Ecol, 2008, 96:807-820
[21]  9 Comita L S, Condit R, Hubbell S P. Developmental changes in habitat associations of tropical trees. J Ecol, 2007, 95: 482-492
[22]  10 Lai J, Mi X, Ren H, et al. Species-habitat associations change in a subtropical forest of China. J Veg Sci, 2009, 20: 415-423
[23]  11 Condit R, Ashton P S, Baker P, et al. Spatial patterns in the distribution of tropical tree species. Science, 2000, 288: 1414-1418
[24]  12 Wang X, Wiegand T, Wolf A, et al. Spatial patterns of tree species richness in two temperate forests. J Ecol, 2011, 99: 1382-1393
[25]  17 Zhang J, Hao Z, Sun I F, et al. Density dependence on tree survival in an old-growth temperate forest in northeastern China. Ann Forest Sci, 2009, 66: 1-9
[26]  18 Piao T, Comita L S, Jin G, et al. Density dependence across multiple life stages in a temperate old-growth forest of northeast China. Oecologia, 2013: 1-11
[27]  21 李立, 陈建华, 任海保, 等. 古田山常绿阔叶林优势树种甜槠和木荷的空间格局分析. 植物生态学报, 2010, 34: 241-252
[28]  22 Ripley B D. The second-order analysis of stationary point processes. J Appl Probab, 1976, 13: 255-266
[29]  27 Gatrell A C, Bailey T C, Diggle P J, et al. Spatial point pattern analysis and its application in geographical epidemiology. Trans Inst Br Geo, 1996, 21: 256-274
[30]  28 Getzin S, Dean C, He F, et al. Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography, 2006, 29: 671-682
[31]  29 Friedrich L. R Foundation for Statistical Computing, Vienna, Austria. 2003, ISBN 3-900051-07-0, http: //www. R-project.org
[32]  30 Baddeley A, Turner R. Spatstat: An R package for analyzing spatial point patterns. J Stat Softw, 2005, 12: 1-42
[33]  31 Hubbell S P, Foster R B. Commonness and rarity in an eotropical forest: Implications for tropical tree conservation. In: Soulé M E, ed. Conservation Biology: Science of Scarcity and Diversity. Sunderland: Sinauer Press, 1986. 205-231
[34]  34 Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50-ha Neotropical forest plot. J Ecol, 2001, 89:947-959
[35]  35 Canham C D, Coates K D, Bartemucci P, et al. Measurement and modeling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia. Can J For Res, 1999, 29: 1775-1783
[36]  36 Janzen D H. Herbivores and the number of tree species in tropical forests. Am Nat, 1970, 104: 501-528
[37]  37 Connell J H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer P J, Gradwell G R, eds. Dynamics of Numbers in Populations. Centre for Agricultural Publication and Documentation, Wageningen,1971. 298-312
[38]  38 He F, Duncan R P. Density-dependent effects on tree survival in an old-growth Douglas fir forest. J Ecol, 2000, 88: 676-688

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133