全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

富氧条件下改性Pd/TiO2-Al2O3催化剂上H2选择性催化还原NOx

DOI: 10.1360/csb2014-59-26-2575, PP. 2575-2581

Keywords: NOx脱除,H2选择性催化还原,(H2-SCR),Sn改,Pd/TiO2-Al2O3,Pd分布,NO吸附和氧化

Full-Text   Cite this paper   Add to My Lib

Abstract:

考察了Pd-X(X=Ni,Sn,Ca)/TiO2-Al2O3催化剂上氢气选择性还原NOx的性能.发现通过Sn和Ni改性后催化剂在高于200℃后的活性有所提高,尤其是Pd-Sn/TiO2-Al2O3催化剂既能保持Pd/TiO2-Al2O3低温良好活性的同时,高温活性及N2的选择性也有明显提高,Sn的最佳负载量为2%(质量比).X射线衍射(XRD)结果表明改性Pd-Sn/TiO2-Al2O3催化剂中Pd与Sn之间的相互作用促进了Pd在载体上的分散.H2程序升温还原(H2-TPR)结果表明,Sn的加入促进了活性组分Pd以Pd0的形式存在,并且提高了Pd/TiO2-Al2O3催化剂的氧化-还原性能,从而使其活性和N2选择性得到提高.NOx程序升温脱附(NOx-TPD)结果表明,Sn和Ni的添加有助于Pd/TiO2-Al2O3催化剂上NOx的吸附以及NO氧化为NO2的进行,这可能是活性和选择性提高的重要原因.

References

[1]  1 Wu P, Yu Q, Yan J J, et al. Progress in selective catalytic reduction of NOx by hydrogen in excess oxygen. Chin J Catal, 2010, 31: 912-918
[2]  2 David B. International private and public reinforcing dependencies for the innovation of automotive emission control systems in Japan and USA. Transport Res A, 2011, 45: 375-388
[3]  3 Bal R D, Dong S J, Si H L, et al. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor. J Hazard Mater, 2008, 150: 649-655
[4]  4 Fredrik K, Kalle A, Kari E, et al. Toward improved catalytic low-temperature NO removal in diesel-powered vehicles. Acc Chem Res, 2006, 39: 273-282
[5]  5 Savva P G, Costa C N.Hydrogen lean-DeNOx as an alternative to the ammonia and hydrocarbon selective catalytic reduction (SCR). Catal Rev Sci Eng, 2011, 53: 91-151
[6]  6 Shi X Y, Yu Y B, He H, et al. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine. J Environ Sci China, 2008, 20: 177-182
[7]  7 Yu Y B, Zhao J J, Yan Y, et al. A cyclic reaction pathway triggered by ammonia for the selective catalytic reduction of NOx by ethanol over Ag/Al2O3. Appl Catal B, 2013, 136-137: 103-111
[8]  8 Burch R, Coleman M D. An investigation of the NO/H2/O2 reaction on noble metal catalysts at low temperature under lean-burn condition. Appl Catal B, 1999, 23: 115-121
[9]  9 Machida M, Ikeda S, Kurogi D, et al. Low temperature catalytic NOx-H2 reactions over Pt/TiO2-ZrO2 in an excess oxygen. Appl Catal B, 2001, 35: 107-116
[10]  10 Nanba T, Kohno C, Masukawa S, et al. Improvements in the N2 selectivity of Pt catalysts in the NO-H2-O2 reaction at low temperatures. Appl Catal B, 2003, 46: 353-364
[11]  11 Machida M, Watanabe T. Effect of Na-addition on catalytic activity of Pt-ZSM-5 for low-temperature NO-H2-O2 reactions. Appl Catal B, 2004, 52: 281-286
[12]  17 Greenhalgh B, Charland J P, Stanciulescu M, et al. Pd-promoted catalysts for low temperature diesel engine DeNOx. Catal Today, 2010, 151: 285-290
[13]  20 Liu Z M, Li J H, Hao J M. Selective catalytic reduction of NOx with propene over SnO2/Al2O3 catalyst. Chem Eng J, 2010, 165: 420-425
[14]  21 Li J H, Hao J M, Fu L X, et al. The activity and characterization of sol-gel Sn/Al2O3 catalyst for selective catalytic reduction of NOx in the presence of oxygen. Catal Today, 2004, 90: 215-221
[15]  22 Corro G, Fierro J L G, Montiel R, et al. A highly sulfur resistant Pt-Sn/Al2O3 catalyst for C3H8-NO-O2 reaction under lean conditions. Appl Catal B, 2003, 46: 307-317
[16]  23 Li D C, Wang L J, Zhang P, et al. HI decomposition over active carbon supported binary Ni-Pd catalysts prepared by electroless plating. Catal Commun, 2013, 37: 32-35
[17]  25 Li L D, Zhang F X, Guan N J, et al. NO selective reduction by hydrogen on potassium titanate supported palladium catalyst. Catal Commun, 2008, 9: 1827-1832
[18]  27 陈英, 何俊, 马玉刚, 等. Pd/TiO2/γ-Al2O3的NOx储存性能和抗硫性能. 分子催化, 2007, 21: 427-432
[19]  29 Norman M, Rachael C, James M K, et al. Exploiting the synergy of titania and alumina in lean NOx reduction in situ ammonia generation during the Pd/TiO2-Al2O3 catalysted H2/CO/NO/O2 reaction. J Catal, 2004, 221: 20-31
[20]  30 Arunkumar S, Pratyay B, Satyanarayana L, et al. Hierarchical SnO/SnO2 nanocomposites: Formation of in situ p-n junctions and enhanced H2 sensing. Sens Actuators B, 2013, 185: 265-273
[21]  31 Anthony G, Károly L, Florence E. Effect of the support on tin distribution in Pd-Sn/Al2O3 and Pd-Sn/SiO2 catalysts for application in water denitration. Appl Catal B, 2005, 59: 57-69
[22]  34 Nan B C K, Masukawa S, Uchisawa J, et al. Improvements in the N2 selectivity of Pt catalysts in the NO-H2-O2 reaction at low temperature. Appl Catal B, 2003, 46: 353-364
[23]  35 Devadas A, Vasudevan S, Epron F. Nitrate reduction in water: Influence of the addition of a second metal on the performances of the Pd/CeO2 catalyst. J Hazard Mater, 2011, 185: 1412-1417
[24]  12 Costa N C, Angelos M E. Mechanistic aspects of the H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. J Phys Chem C, 2007, 111: 3010-3020
[25]  13 Stefania F, Nunzio R, Debora F, et al. NO SCR reduction by hydrogen generated in on perovskite-type catalysts for automobile diesel exhaust gas treatment. Chem Eng Sci, 2010, 65: 120-127
[26]  14 Liu Z M, Li J H, Woo S I. Recent advances in the selective catalytic reduction of NOx by hydrogen in the presence of oxygen. Energy Environ Sci, 2012, 5: 8799-8814
[27]  15 Hideaki H, Masaaki H. A review of selective catalytic reduction of nitrogen oxides with hydrogen and carbon monoxide. Appl Catal A, 2012, 421-422: 1-13
[28]  16 Melanie L, Florian J P S, Michael B, et al. NOx reduction by H2 on WOx/ZrO-supported Pd catalysts under lean condition. Appl Catal B, 2012, 117-118: 275-282
[29]  18 Yue B H, Zhou R X, Zheng X M, et al. Promotional effect of Ca on the Pd/Ce-Zr/Al2O3 catalyst for low-temperature catalytic combustion of methane. Fuel Process Technol, 2008, 89: 728-735
[30]  19 Wang G, Meng M, Zha Y Q, et al. High-temperature close coupled catalysts Pd/Ce-Zr-M/Al2O3 (M=Y, Ca or Ba) used for the total oxidation of propane. Fuel, 2010, 89: 244-251
[31]  24 Amin R S, Hameed R M A, El-Khatib K M. Microwave heated synthesis of carbon supported Pd, Ni and Pd-Ni nanoparticles for methanol oxidation in KOH solution. Appl Catal B, 2014, 148-149: 557-567
[32]  26 Li J, Wu G J, Guan N J, et al. NO selective reduction by hydrogen over bimetallic Pd-Ir/TiO2 catalyst. Catal Commun, 2012, 24: 38-43
[33]  28 夏淑梅, 徐长松, 张密林, 等. 磁性纳米TiO2/SiO2/NiFe2O4的制备及其催化性能. 化学研究与运用, 2009, (4): 455-458
[34]  32 Zhao J, Xu X L, Li X N, et al. Promotion of Sn on the Pd/AC catalyst for the selective hydrogenation of cinnamaldehyde. Catal Commun, 2014, 43: 102-106
[35]  33 Tanksale A, Beltramini J N, Dumesic J A, et al. Effect of Pt and Pd promoter on Ni supported catalysts-A TPR/TPO/TPD and microcalorimetry study. J Catal, 2008, 258: 366-377
[36]  36 Adagneves O C, Luciana S F, Fabio B P, et al. Microkinetic modeling of the hydrogenation of nitrate in water on Pd-Sn/Al2O3 catalyst. Appl Catal A, 2012, 445-446: 26-34
[37]  37 Wang G, You R, Meng M. An optimized highly active and thermo-stable oxidation catalyst Pd/Ce-Zr-Y/Al2O3 calcined at superhigh temperature and used for C3H8 total oxidation. Fuel, 2013, 103: 799-804
[38]  38 Zhang C B, He H, Tanaka K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl Catal B, 2006, 65: 37-43
[39]  39 Chiarello G L, Ferri D, Grunwaldt J D, et al. Flame-synthesized LaCoO3-supported Pd: 2. Catalytic behavior in the reduction of NO by H2 under lean conditions. J Catal, 2007, 252: 137-147
[40]  40 Hu Y H, Griffiths K, Norton P R. Surface science studies of selective catalytic reduction of NO: Progress in the last ten years. Surface Sci, 2009, 603: 1740-1750
[41]  41 Petros G S, Angelos M E. The influence of reaction temperature on the chemical structure and surface concentration of active NOx in H2-SCR over Pt/MgO-CeO2: SSITKA-DRIFTS and transient mass spectrometry studies. J Catal, 2008, 257: 324-333

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133