5 Zhang X, Shi H, Xu B Q. Comparative study of Au/ZrO2 catalysts in CO oxidation and 1,3-butadiene hydrogenation. Catal Today, 2007, 122: 330-337
[3]
6 Haruta M, Yamada N, Kobayashi T S, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and carbon monoxide. J Catal, 1989, 115: 301-309
[4]
9 Li J J, Hu Q, Tian H, et al. Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity. J Colloid Interface Sci, 2009, 339: 160-167
[5]
10 Wang Y, Cao J L, Yu M G, et al. Porous α-Fe2O3 hollow microspheres: Hydrothermal synthesis and their application in ethanol sensors. Mater Lett, 2013, 100: 102-105
[6]
11 Biabani-Ravandi A, Rezaei M, Fattah Z. Low-temperature CO oxidation over nanosized Fe-Co mixed oxide catalysts: Effect of calcination temperature and operational conditions. Chem Eng Sci, 2013, 94: 237-244
[7]
12 Zhang J J, Huang T, Liu Z L, et al. Mesoporous Fe2O3 nanoparticles as high performance anode materials for lithium-ion batteries. Electrochem Commun, 2013, 29: 17-20
[8]
13 Ma X D, Sun Q, Feng X, et al. Catalytic oxidation of 1,2-dichlorobenzene over CaCO3/α-Fe2O3 nanocomposite catalysts. Appl Catal A, 2013, 450: 143-151
[9]
16 Barakat T, Rooke J C, Genty E, et al. Gold catalysts in environmental remediation and water-gas shift technologies. Energy Environ Sci, 2013, 6: 371-391
20 Chen B B, Shi C, Crocker M, et al. Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Appl Catal B, 2013, 132-133: 245-255
[12]
21 Xue W J, Wang Y F, Li P, et al. Morphology effects of Co3O4 on the catalytic activity of Au/Co3O4 catalysts for complete oxidation of trace ethylene. Catal Commun, 2011, 12: 1265-1268
[13]
22 Ma C Y, Mu Z, Li J J, et al. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. J Am Chem Soc, 2010, 132: 2608-2613
[14]
23 Zhong Z Y, Lin J Y, Teh S P, et al. A rapid and efficient method to deposit gold particles on catalyst supports and its application for CO oxidation at low temperatures. Adv Funct Mater, 2007, 17: 1402-1408
[15]
24 Venugopal A, Scurrell M S. Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behaviour in the water- gas shift reaction. Appl Catal A, 2004, 258: 241-249
7 Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548-552
[20]
8 Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57: 603-619
[21]
14 Ma X D, Feng X, Guo J, et al. Catalytic oxidation of 1,2-dichlorobenzene over Ca-doped FeOx hollow microspheres. Appl Catal B, 2014, 147: 666-676
[22]
15 Ma X D, Shen J S, Pu W Y, et al. Water-resistant Fe-Ca-Ox/TiO2 catalysts for low temperature 1,2-dichlorobenzene oxidation. Appl Catal A, 2013, 466: 68-76
[23]
18 Elena C, Hu Y J, Matthew S, et al. A comparison of point of zero charge measurement methodology. Clays Clay Miner, 2011, 59: 107-115
[24]
19 Wagner C D, Moulder J F, Davis L E, et al. Handbook of X-ray Photoelectron Spectroscopy. Minnesota: Perkin-Elmer Corporation, 1979. 154-155
[25]
25 Tai Y, Yamaguchi W, Okada M, et al. Depletion of CO oxidation activity of supported Au catalysts prepared from thiol-capped Au nanoparticles by sulfates formed at Au-titania boundaries: Effects of heat treatment conditions on catalytic activity. J Catal, 2010, 270: 234-241