1 Srinivasan G. Magnetoelectric composites. Annu Rev Mater Res, 2010, 40: 153-178
[2]
2 Liu M, Obi O, Lou J, et al. Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater, 2009, 19: 1826-1831
[3]
3 Liu M, Zhou Z, Nan T, et al. Voltage tuning of ferromagnetic resonance with bistable magnetization switching in energy-efficient magnetoelectric composites. Adv Mater, 2013, 25: 1435-1439
[4]
4 Shi J, Ha S D, Zhou Y, et al. A correlated nickelate synaptic transistor. Nat Commun, 2013, 4: 2676
[5]
5 Das J, Song Y Y, Mo N, et al. Electric-field-tunable low loss multiferroic ferrimagnetic-ferroelectric heterostructures. Adv Mater, 2009, 21: 2045-2049
[6]
6 Ramesh R, Spaldin N A. Multiferroics: Progress and prospects in thin films. Nat Mater, 2007, 6: 21-29
[7]
8 Schlom D G, Chen L Q, Eom C B, et al. Strain tuning of ferroelectric thin films. Annu Rev Mater Res, 2007, 37: 589-626
[8]
13 Spaldin N A, Cheong S W, Ramesh R. Multiferroics: Past, present, and future. Phys Today, 2010, 63: 38-43
[9]
14 Dong S X, Zhai J Y, Li J F, et al. Small dc magnetic field response of magnetoelectric laminate composites. Appl Phys Lett, 2006, 88: 082907
[10]
15 Ma J, Hu J M, Li Z, et al. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv Mater, 2011, 23: 1062-1087
[11]
16 Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J Appl Phys, 2008, 103: 031101
[12]
18 Li N, Liu M, Zhou Z, et al. Electrostatic tuning of ferromagnetic resonance and magnetoelectric interactions in ferrite-piezoelectric heterostructures grown by chemical vapor deposition. Appl Phys Lett, 2011, 99: 192502
[13]
19 Srinivasan G, Fetisov Y K. Ferrite-piezoelectric layered structures: Microwave magnetoelectric effects and electric field tunable devices. Ferroelectrics, 2006, 342: 65-71
[14]
20 Viswanath B, Ramanathan S. Direct in situ observation of structural transition driven actuation in VO2 utilizing electron transparent cantilevers. Nanoscale, 2013, 5: 7484-7492
[15]
21 Liu M, Sun N X. Voltage control of magnetism in multiferroic heterostructures. Philos Trans R Soc A-Math Phys Eng Sci, 2014, 372: 20120439
[16]
22 Ustinov A B, Srinivasan G, Kalinikos B A. Ferrite-ferroelectric hybrid wave phase shifters. Appl Phys Lett, 2007, 90: 031913
[17]
23 Fetisov Y K, Srinivasan G. Ferrite/piezoelectric microwave phase shifter: Studies on electric field tunability. Electron Lett, 2005, 41: 1066-1067
[18]
24 Tatarenko A S, Srinivasana G, Bichurin M I. Magnetoelectric microwave phase shifter. Appl Phys Lett, 2006, 88: 183507
[19]
27 Eerenstein W, Wiora M, Prieto J L, et al. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat Mater, 2007, 6: 348-351
[20]
28 Aetukuri N B, Gray A X, Drouard M, et al. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat Phys, 2013, 9: 661-666
[21]
29 Hu J M, Li Z, Chen L Q, et al. Design of a voltage-controlled magnetic random access memory based on anisotropic magnetoresistance in a single magnetic layer. Adv Mater, 2012, 24: 2869-2873
[22]
30 Liu M, Howe B M, Grazulis L, et al. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv Mater, 2013, 25: 4886-4892
[23]
38 Fetisov Y K, Srinivasan G. Electrically tunable ferrite-ferroelectric microwave delay lines. Appl Phys Lett, 2005, 87: 103502
[24]
39 Liu M, Obi O, Cai Z H, et al. Electrical tuning of magnetism in Fe3O4/PZN-PT multiferroic heterostructures derived by reactive magnetron sputtering. J Appl Phys, 2010, 107: 073916
[25]
40 Semenov A A, Karmanenko S F, Demidov V E, et al. Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave resonators. Appl Phys Lett, 2006, 88: 033503
[26]
41 Srinivasan G, de Vreugd C P, Bichurin M I, et al. Magnetoelectric interactions in bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate: Evidence for strong coupling in single crystals and epitaxial films. Appl Phys Lett, 2005, 86: 222506
[27]
48 Shu L, Li Z, Ma J, et al. Thickness-dependent voltage-modulated magnetism in multiferroic heterostructures. Appl Phys Lett, 2012, 100: 022405
[28]
49 Nan T X, Zhou Z Y, Lou J, et al. Voltage impulse induced bistable magnetization switching in multiferroic heterostructures. Appl Phys Lett, 2012, 100: 132409
[29]
50 Liu M, Obi O, Lou J, et al. Spin-spray deposited multiferroic composite Ni0.23Fe2.77O4/Pb(Zr,Ti)O3 with strong interface adhesion. Appl Phys Lett, 2008, 92: 152504
[30]
54 Yun T Y, Chang K. Uniplanar one-dimensional photonic-bandgap structures and resonators. IEEE Trans Microw Theory Tech, 2001, 49: 549-553
[31]
55 Fetisov Y K, Srinivasan G. Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl Phys Lett, 2006, 88: 143503
[32]
56 Murthy D V B, Srinivasan G. Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite-ferroelectric composites. Front Phys, 2012, 7: 418-423
[33]
59 Poon J K S, Scheuer J, Xu Y, et al. Designing coupled-resonator optical waveguide delay lines. J Opt Soc Am B-Opt Phys, 2004, 21: 1665-1673
[34]
60 Hristoforou E, Ktena A. Magnetostriction and magnetostrictive materials for sensing applications. J Magn Magn Mater, 2007, 316: 372-378
[35]
61 Ozgur U, Alivov Y, Morkoc H. Microwave ferrites, part 1: Fundamental properties. J Mater Sci Mater Electron, 2009, 20: 789-834
[36]
62 Geiler A L, Gillette S M, Chen Y, et al. Multiferroic heterostructure fringe field tuning of meander line microstrip ferrite phase shifter. Appl Phys Lett, 2010, 96: 053508
[37]
63 Bichurin M I, Viehland D, Srinivasan G. Magnetoelectric interactions in ferromagnetic-piezoelectric layered structures: Phenomena and devices. J Electroceram, 2007, 19: 243-250
[38]
64 Tatarenko A S, Murthy D V B, Srinivasan G. Hexagonal ferrite-piezoelectric composites for dual magnetic and electric field tunable 8-25 GHz microstripline resonators and phase shifters. Microw Opt Technol Lett, 2012, 54: 1215-1218
[39]
65 Yang G M, Lou J, Wu J, et al. Dual H-and E-field tunable multiferroic bandpass filters with yttrium iron garnet film. In: Proceedings of International Conference on Microwave Symposium Digest (MTT). Baltimore, 2011. 1-4
[40]
66 Zhang S, Zhao Y G, Li P S, et al. Electric-field control of nonvolatile magnetization in structure at room temperature. Phys Rev Lett, 2012, 108: 137203
[41]
7 Vaz C A F, Hoffman J, Anh C H, et al. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater, 2010, 22: 2900-2918
[42]
9 Chen X, Hochstrat A, Borisov P, et al. Magnetoelectric exchange bias systems in spintronics. Appl Phys Lett, 2006, 89: 202508
[43]
10 Scott J F. Electrical characterization of magnetoelectrical materials. J Mater Res, 2007, 22: 2053-2062
[44]
11 Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759-765
[45]
12 Cheong S W, Mostovoy M. Multiferroics: A magnetic twist for ferroelectricity. Nat Mater, 2007, 6: 13-20
[46]
17 Wu T, Zhao P, Bao M, et al. Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg1/3Nb2/3)O(1-x)-[PbTiO3]x(PMN-PT, x≈0.32) single crystals. J Appl Phys, 2011, 109: 124101
[47]
25 Wu T, Bur A, Zhao P, et al. Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric heterostructure. Appl Phys Lett, 2011, 98: 012503
[48]
26 Zheng R K, Jiang Y, Wang Y, et al. Investigation of substrate-induced strain effects in La 0.7Ca0.15Sr0.15MnO3 thin films using ferroelectric polarization and the converse piezoelectric effect. Appl Phys Lett, 2008, 93: 102904
[49]
31 Thiele C, D?rr K, Bilani O, et al. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca). Phys Rev B, 2007, 75: 054408
[50]
32 He X, Wang Y, Wu N, et al. Robust isothermal electric control of exchange bias at room temperature. Nat Mater, 2010, 9: 579-585
[51]
33 Petrov V M, Srinivasan G, Bichurin M I, et al. Theory of magnetoelectric effects in ferrite piezoelectric nanocomposites. Phys Rev B, 2007, 75: 224407
[52]
34 Burdin D A, Chashin D V, Ekonomov N A, et al. Multiferroic bending mode resonators and studies on temperature dependence of magnetoelectric interactions. Appl Phys Lett, 2012, 100: 242902
[53]
35 Semenov A A, Kamanenko S F, Kalinikos B A, et al. Dual-tunable hybrid wave ferrite-ferroelectric microwave resonator. Electron Lett, 2006, 42: 641-642
[54]
36 Srinivasan G, Fetisov Y K. Microwave magnetoelectric effects and signal processing devices. Integr Ferroelectr, 2006, 83: 89-98
[55]
37 Ustinov A B, Tiberkevich V S, Srinivasan G, et al. Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory. J Appl Phys, 2006, 100: 093905
[56]
42 Srinivasan G, DeVreugd C P, Flattery C S, et al. Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites. Appl Phys Lett, 2004, 85: 2550-2552
[57]
43 Ustinov A B, Kalinikos B A, Srinivasan G. Nonlinear multiferroic phase shifters for microwave frequencies. Appl Phys Lett, 2014, 104: 052911
[58]
44 Semenov A A, Karmanenko S F, Kalinikos B A, et al. Ferrite/ferroelectric layered structures for magnetic and electric field tunable microwave devices. Integr Ferroelectr, 2005, 77: 199-205
[59]
45 Hu J M, Nan C W. Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures. Phys Rev B, 2009, 80: 224416
[60]
46 Liu J M, Nan C W. Ferroelectricity and multiferroicity: Broader way to go beyond. Front Phys, 2012, 7: 373-374
[61]
47 Liu M, Obi O, Lou J, et al. Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition. J Phys D Appl Phys, 2009, 42: 045007
[62]
51 Lou J, Insignares R E, Cai Z, et al. Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films. Appl Phys Lett, 2007, 91: 182504
[63]
52 Zhou H M, Li C, Zhu F J, et al. A generalized lumped element modeling of electrically and magnetically dual-tunable microwave magnetoelectric resonators. J Appl Phys, 2013, 114: 083902
[64]
53 Martin F, Falcone F, Bonache J, et al. Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators. IEEE Microw Wirel Compon Lett, 2003, 13: 511-513
[65]
57 Pettiford C, Dasgupta S, Lou J, et al. Bias field effects on microwave frequency behavior of PZT/YIG magnetoelectric bilayer. IEEE Trans Magn, 2007, 43: 3343-3345
[66]
58 Dudek P, Szczepanski S, Hatfield J V. A high-resolution CMOS time-to-digital converter utilizing a vernier delay line. IEEE J Solid-State Circuit, 2000, 35: 240-247