全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

新型多铁层合异质结及其在可调微波器件中的应用

DOI: 10.1360/csb2014-59-36-3591, PP. 3591-3602

Keywords: 多铁异质结,磁电耦合,非易失性调控,微波器件,铁氧体

Full-Text   Cite this paper   Add to My Lib

Abstract:

电压调控磁序的研究,对于实现超快响应、微型化和低功耗的电子器件具有重要的理论和实践意义.同时具有铁电和铁磁特性的多铁异质结可通过基于应变诱导的磁电耦合效应实现由电压调控磁特性,从而引起了学术界的广泛关注.在多铁异质结中,利用磁弹作用,电场引起的机械应变可在铁磁相中产生等效磁场,并改变其铁磁共振频率.因此,由其制备的微波器件必然满足微型化、超快响应和低功耗的要求,并可实现新的功能性.本文将从不同的方面介绍最近关于多铁体及其在微波器件中的应用等方面的工作,主要包括具有强磁电耦合效应的新型多铁层合异质结的构建,基于多铁异质结的可调微波信号处理器的开发,以及在多铁异质结中通过铁电畴弹性反转来非易失性调控微波性质的研究.这类可调节的多铁异质结及其器件的研发为实现下一代可调磁性微波元件、超低功耗电子器件和自旋电子元器件提供了广阔的前景.

References

[1]  1 Srinivasan G. Magnetoelectric composites. Annu Rev Mater Res, 2010, 40: 153-178
[2]  2 Liu M, Obi O, Lou J, et al. Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater, 2009, 19: 1826-1831
[3]  3 Liu M, Zhou Z, Nan T, et al. Voltage tuning of ferromagnetic resonance with bistable magnetization switching in energy-efficient magnetoelectric composites. Adv Mater, 2013, 25: 1435-1439
[4]  4 Shi J, Ha S D, Zhou Y, et al. A correlated nickelate synaptic transistor. Nat Commun, 2013, 4: 2676
[5]  5 Das J, Song Y Y, Mo N, et al. Electric-field-tunable low loss multiferroic ferrimagnetic-ferroelectric heterostructures. Adv Mater, 2009, 21: 2045-2049
[6]  6 Ramesh R, Spaldin N A. Multiferroics: Progress and prospects in thin films. Nat Mater, 2007, 6: 21-29
[7]  8 Schlom D G, Chen L Q, Eom C B, et al. Strain tuning of ferroelectric thin films. Annu Rev Mater Res, 2007, 37: 589-626
[8]  13 Spaldin N A, Cheong S W, Ramesh R. Multiferroics: Past, present, and future. Phys Today, 2010, 63: 38-43
[9]  14 Dong S X, Zhai J Y, Li J F, et al. Small dc magnetic field response of magnetoelectric laminate composites. Appl Phys Lett, 2006, 88: 082907
[10]  15 Ma J, Hu J M, Li Z, et al. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv Mater, 2011, 23: 1062-1087
[11]  16 Nan C W, Bichurin M I, Dong S X, et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J Appl Phys, 2008, 103: 031101
[12]  18 Li N, Liu M, Zhou Z, et al. Electrostatic tuning of ferromagnetic resonance and magnetoelectric interactions in ferrite-piezoelectric heterostructures grown by chemical vapor deposition. Appl Phys Lett, 2011, 99: 192502
[13]  19 Srinivasan G, Fetisov Y K. Ferrite-piezoelectric layered structures: Microwave magnetoelectric effects and electric field tunable devices. Ferroelectrics, 2006, 342: 65-71
[14]  20 Viswanath B, Ramanathan S. Direct in situ observation of structural transition driven actuation in VO2 utilizing electron transparent cantilevers. Nanoscale, 2013, 5: 7484-7492
[15]  21 Liu M, Sun N X. Voltage control of magnetism in multiferroic heterostructures. Philos Trans R Soc A-Math Phys Eng Sci, 2014, 372: 20120439
[16]  22 Ustinov A B, Srinivasan G, Kalinikos B A. Ferrite-ferroelectric hybrid wave phase shifters. Appl Phys Lett, 2007, 90: 031913
[17]  23 Fetisov Y K, Srinivasan G. Ferrite/piezoelectric microwave phase shifter: Studies on electric field tunability. Electron Lett, 2005, 41: 1066-1067
[18]  24 Tatarenko A S, Srinivasana G, Bichurin M I. Magnetoelectric microwave phase shifter. Appl Phys Lett, 2006, 88: 183507
[19]  27 Eerenstein W, Wiora M, Prieto J L, et al. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat Mater, 2007, 6: 348-351
[20]  28 Aetukuri N B, Gray A X, Drouard M, et al. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat Phys, 2013, 9: 661-666
[21]  29 Hu J M, Li Z, Chen L Q, et al. Design of a voltage-controlled magnetic random access memory based on anisotropic magnetoresistance in a single magnetic layer. Adv Mater, 2012, 24: 2869-2873
[22]  30 Liu M, Howe B M, Grazulis L, et al. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv Mater, 2013, 25: 4886-4892
[23]  38 Fetisov Y K, Srinivasan G. Electrically tunable ferrite-ferroelectric microwave delay lines. Appl Phys Lett, 2005, 87: 103502
[24]  39 Liu M, Obi O, Cai Z H, et al. Electrical tuning of magnetism in Fe3O4/PZN-PT multiferroic heterostructures derived by reactive magnetron sputtering. J Appl Phys, 2010, 107: 073916
[25]  40 Semenov A A, Karmanenko S F, Demidov V E, et al. Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave resonators. Appl Phys Lett, 2006, 88: 033503
[26]  41 Srinivasan G, de Vreugd C P, Bichurin M I, et al. Magnetoelectric interactions in bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate: Evidence for strong coupling in single crystals and epitaxial films. Appl Phys Lett, 2005, 86: 222506
[27]  48 Shu L, Li Z, Ma J, et al. Thickness-dependent voltage-modulated magnetism in multiferroic heterostructures. Appl Phys Lett, 2012, 100: 022405
[28]  49 Nan T X, Zhou Z Y, Lou J, et al. Voltage impulse induced bistable magnetization switching in multiferroic heterostructures. Appl Phys Lett, 2012, 100: 132409
[29]  50 Liu M, Obi O, Lou J, et al. Spin-spray deposited multiferroic composite Ni0.23Fe2.77O4/Pb(Zr,Ti)O3 with strong interface adhesion. Appl Phys Lett, 2008, 92: 152504
[30]  54 Yun T Y, Chang K. Uniplanar one-dimensional photonic-bandgap structures and resonators. IEEE Trans Microw Theory Tech, 2001, 49: 549-553
[31]  55 Fetisov Y K, Srinivasan G. Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl Phys Lett, 2006, 88: 143503
[32]  56 Murthy D V B, Srinivasan G. Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite-ferroelectric composites. Front Phys, 2012, 7: 418-423
[33]  59 Poon J K S, Scheuer J, Xu Y, et al. Designing coupled-resonator optical waveguide delay lines. J Opt Soc Am B-Opt Phys, 2004, 21: 1665-1673
[34]  60 Hristoforou E, Ktena A. Magnetostriction and magnetostrictive materials for sensing applications. J Magn Magn Mater, 2007, 316: 372-378
[35]  61 Ozgur U, Alivov Y, Morkoc H. Microwave ferrites, part 1: Fundamental properties. J Mater Sci Mater Electron, 2009, 20: 789-834
[36]  62 Geiler A L, Gillette S M, Chen Y, et al. Multiferroic heterostructure fringe field tuning of meander line microstrip ferrite phase shifter. Appl Phys Lett, 2010, 96: 053508
[37]  63 Bichurin M I, Viehland D, Srinivasan G. Magnetoelectric interactions in ferromagnetic-piezoelectric layered structures: Phenomena and devices. J Electroceram, 2007, 19: 243-250
[38]  64 Tatarenko A S, Murthy D V B, Srinivasan G. Hexagonal ferrite-piezoelectric composites for dual magnetic and electric field tunable 8-25 GHz microstripline resonators and phase shifters. Microw Opt Technol Lett, 2012, 54: 1215-1218
[39]  65 Yang G M, Lou J, Wu J, et al. Dual H-and E-field tunable multiferroic bandpass filters with yttrium iron garnet film. In: Proceedings of International Conference on Microwave Symposium Digest (MTT). Baltimore, 2011. 1-4
[40]  66 Zhang S, Zhao Y G, Li P S, et al. Electric-field control of nonvolatile magnetization in structure at room temperature. Phys Rev Lett, 2012, 108: 137203
[41]  7 Vaz C A F, Hoffman J, Anh C H, et al. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater, 2010, 22: 2900-2918
[42]  9 Chen X, Hochstrat A, Borisov P, et al. Magnetoelectric exchange bias systems in spintronics. Appl Phys Lett, 2006, 89: 202508
[43]  10 Scott J F. Electrical characterization of magnetoelectrical materials. J Mater Res, 2007, 22: 2053-2062
[44]  11 Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759-765
[45]  12 Cheong S W, Mostovoy M. Multiferroics: A magnetic twist for ferroelectricity. Nat Mater, 2007, 6: 13-20
[46]  17 Wu T, Zhao P, Bao M, et al. Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg1/3Nb2/3)O(1-x)-[PbTiO3]x(PMN-PT, x≈0.32) single crystals. J Appl Phys, 2011, 109: 124101
[47]  25 Wu T, Bur A, Zhao P, et al. Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric heterostructure. Appl Phys Lett, 2011, 98: 012503
[48]  26 Zheng R K, Jiang Y, Wang Y, et al. Investigation of substrate-induced strain effects in La 0.7Ca0.15Sr0.15MnO3 thin films using ferroelectric polarization and the converse piezoelectric effect. Appl Phys Lett, 2008, 93: 102904
[49]  31 Thiele C, D?rr K, Bilani O, et al. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca). Phys Rev B, 2007, 75: 054408
[50]  32 He X, Wang Y, Wu N, et al. Robust isothermal electric control of exchange bias at room temperature. Nat Mater, 2010, 9: 579-585
[51]  33 Petrov V M, Srinivasan G, Bichurin M I, et al. Theory of magnetoelectric effects in ferrite piezoelectric nanocomposites. Phys Rev B, 2007, 75: 224407
[52]  34 Burdin D A, Chashin D V, Ekonomov N A, et al. Multiferroic bending mode resonators and studies on temperature dependence of magnetoelectric interactions. Appl Phys Lett, 2012, 100: 242902
[53]  35 Semenov A A, Kamanenko S F, Kalinikos B A, et al. Dual-tunable hybrid wave ferrite-ferroelectric microwave resonator. Electron Lett, 2006, 42: 641-642
[54]  36 Srinivasan G, Fetisov Y K. Microwave magnetoelectric effects and signal processing devices. Integr Ferroelectr, 2006, 83: 89-98
[55]  37 Ustinov A B, Tiberkevich V S, Srinivasan G, et al. Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory. J Appl Phys, 2006, 100: 093905
[56]  42 Srinivasan G, DeVreugd C P, Flattery C S, et al. Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites. Appl Phys Lett, 2004, 85: 2550-2552
[57]  43 Ustinov A B, Kalinikos B A, Srinivasan G. Nonlinear multiferroic phase shifters for microwave frequencies. Appl Phys Lett, 2014, 104: 052911
[58]  44 Semenov A A, Karmanenko S F, Kalinikos B A, et al. Ferrite/ferroelectric layered structures for magnetic and electric field tunable microwave devices. Integr Ferroelectr, 2005, 77: 199-205
[59]  45 Hu J M, Nan C W. Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures. Phys Rev B, 2009, 80: 224416
[60]  46 Liu J M, Nan C W. Ferroelectricity and multiferroicity: Broader way to go beyond. Front Phys, 2012, 7: 373-374
[61]  47 Liu M, Obi O, Lou J, et al. Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition. J Phys D Appl Phys, 2009, 42: 045007
[62]  51 Lou J, Insignares R E, Cai Z, et al. Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films. Appl Phys Lett, 2007, 91: 182504
[63]  52 Zhou H M, Li C, Zhu F J, et al. A generalized lumped element modeling of electrically and magnetically dual-tunable microwave magnetoelectric resonators. J Appl Phys, 2013, 114: 083902
[64]  53 Martin F, Falcone F, Bonache J, et al. Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators. IEEE Microw Wirel Compon Lett, 2003, 13: 511-513
[65]  57 Pettiford C, Dasgupta S, Lou J, et al. Bias field effects on microwave frequency behavior of PZT/YIG magnetoelectric bilayer. IEEE Trans Magn, 2007, 43: 3343-3345
[66]  58 Dudek P, Szczepanski S, Hatfield J V. A high-resolution CMOS time-to-digital converter utilizing a vernier delay line. IEEE J Solid-State Circuit, 2000, 35: 240-247

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133