全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

基于(火积)理论的圆柱体热源构形

DOI: 10.1360/N972014-00730, PP. 3609-3614

Keywords: 构形理论,理论,圆柱体热源,耗散率最小,当量热阻,广义热力学优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于构形理论和(火积)理论,以当量热阻为目标对层流冷却条件下的圆柱体热源进行构形研究,分析热源直径和导热系数对其传热性能的影响.结果表明在热源体积一定的条件下,不存在最佳热源直径使得其当量热阻取得最小值.随着热源直径的减小、导热系数的增大,热源当量热阻减小,此时热源系统的整体传热性能得到提高.此外,圆柱体热源表面温度沿来流方向逐渐增大,且其表面换热系数沿来流方向逐渐减小.本文所得结果对热源的优化设计有一定的参考价值.

References

[1]  1 Ledezma G, Morega A M, Bejan A. Optimal spacing between pin fins with impinging flow. Trans ASME J Heat Transf, 1996, 118: 570-577
[2]  2 Fowler A J, Ledezma G A, Bejan A. Optimal geometric arrangement of staggered plates in forced convection. Int J Heat Mass Transf, 1995, 40: 1795-1805
[3]  3 Bejan A, Fowler A J, Stanescu G. The optimal spacing between horizontal cylinders in a fixed volume cooled by natural convection. Int J Heat Mass Transf, 1995, 38: 2047-2055
[4]  4 Stanescu G, Fowler A J, Bejan A. The optimal spacing of cylinders in free-stream cross-flow forced convection. Int J Heat Mass Transf, 1996, 39: 311-317
[5]  5 Bejan A. Street network theory of organization in nature. J Adv Transp, 1996, 30: 85-107
[6]  6 Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Transf, 1997, 40: 799-816
[7]  7 Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: Cambridge University Press, 2000
[8]  8 Bejan A, Lorente S. Design with Constructal Theory. New York: Wiley, 2008
[9]  9 陈林根. 构形理论及其应用的研究进展. 中国科学: 技术科学, 2012, 42: 505-524
[10]  10 Luo L. Heat and Mass Transfer Intensification and Shape Optimization. New York: Springer, 2013
[11]  11 Bejan A, Lorente S. Constructal law of design and evolution: Physics, biology, technology, and society. J Appl Phys, 2013, 113: 151301
[12]  12 Bello-Ochende T, Bejan A. Constructal multi-scale cylinders with natural convection. Int J Heat Mass Transf, 2005, 48: 4300-4306
[13]  13 Bello-Ochende T, Bejan A. Constructal multi-scale cylinders in cross-flow. Int J Heat Mass Transf, 2005, 48: 1373-1383
[14]  14 Bello-Ochende T, Meyer J P. Maximum heat transfer density rate enhancement from cylinders rotating in natural convection. Int Commun Heat Mass Transf, 2011, 38: 1354-1359
[15]  15 Joucaviel M, Gosselin L, Bello-Ochende T. Maximum heat transfer density with rotating cylinders aligned in cross-flow. Int Commun Heat Mass Transf, 2008, 35: 557-564
[16]  16 Page L G, Bello-Ochende T, Meyer J P. Constructal multi scale cylinders with rotation cooled by natural convection. Int J Heat Mass Transf, 2013, 57: 345-355
[17]  17 Jung J, Lorente S, Anderson R, et al. Configuration of heat sources or sinks in a finite volume. J Appl Phys, 2011, 110: 023502
[18]  18 龚舒文, 陈林根, 谢志辉, 等. 自然对流条件下圆柱体热源构形优化. 见中国高等学校工程热物理第二十届全国学术会议文集, 2014
[19]  19 Guo Z, Zhu H, Liang X. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transf, 2007, 50: 2545-2556
[20]  20 李志信, 过增元. 对流传热优化的场协同理论. 北京: 科学出版社, 2010
[21]  21 过增元, 程新广, 夏再忠. 最小热量传递势容耗散函数原理及其在导热优化中的应用. 科学通报, 2003, 48: 21-25
[22]  22 过增元. 热学中的新物理量. 工程热物理学报, 2008, 29: 112-114
[23]  23 陈群. 对流传递过程的不可逆性及其优化. 博士学位论文. 北京: 清华大学, 2008
[24]  24 Cheng X, Liang X. Entransy, entransy dissipation and entransy loss for analyses of heat transfer and heat-work conversion processes. J Therm Sci Technol, 2013, 8: 337-352
[25]  25 陈林根.(火积)理论及其应用的进展. 科学通报, 2012, 57: 2815-2835
[26]  26 Chen Q, Liang X. Entransy theory for the optimization of heat transfer—A review and update. Int J Heat Mass Transf, 2013, 63: 65-81
[27]  27 Wu J, Guo Z. Application of entransy analysis in self-heat recuperation technology. Ind Eng Chem Res, 2014, 53: 1274-1285
[28]  28 Cheng X, Liang X. Application of entransy optimization to one-stream series-wound and parallel heat exchanger networks. Heat Transf Eng, 2014, 35: 985-995
[29]  29 魏曙寰, 陈林根, 孙丰瑞. 基于矩形单元体的以 耗散最小为目标的“体点”导热构形优化. 中国科学E辑: 技术科学, 2009, 39: 278-285
[30]  30 谢志辉, 陈林根, 孙丰瑞. T形肋 耗散率最小与最大热阻最小构形优化的比较研究. 中国科学: 技术科学, 2011, 41: 962-970
[31]  31 Chen L, Xiao Q, Xie Z, et al. T-shaped assembly of fins with constructal entransy dissipation rate minimization. Int Commun Heat Mass Transf, 2012, 39: 1556-1562
[32]  32 Chen L, Xiao Q, Xie Z, et al. Constructal entransy dissipation rate minimization for tree-shaped assembly of fins. Int J Heat Mass Transf, 2013, 67: 506-513
[33]  33 肖庆华, 陈林根, 孙丰瑞. 基于 耗散率最小的伞形柱状肋片构形优化. 中国科学: 技术科学, 2011, 41: 365-373
[34]  34 肖庆华, 陈林根, 谢志辉, 等. Y形肋片 耗散率最小构形优化. 工程热物理学报, 2012, 33: 1465-1470
[35]  35 冯辉君, 陈林根, 孙丰瑞. 基于 耗散率最小的叶形肋片构形优化. 中国科学: 技术科学, 2012, 42: 456-466
[36]  36 冯辉君, 陈林根, 谢志辉, 等. 基于 耗散极值原理的轧钢加热炉壁绝热构形优化. 中国科学: 技术科学, 2012, 42: 1377-1387
[37]  37 Feng H, Chen L, Xie Z, et al. Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall. Int Commun Heat Mass Transf, 2014, 52: 26-32
[38]  38 杨世铭, 陶文铨. 传热学. 北京: 高等教育出版社, 2006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133