1 Ledezma G, Morega A M, Bejan A. Optimal spacing between pin fins with impinging flow. Trans ASME J Heat Transf, 1996, 118: 570-577
[2]
2 Fowler A J, Ledezma G A, Bejan A. Optimal geometric arrangement of staggered plates in forced convection. Int J Heat Mass Transf, 1995, 40: 1795-1805
[3]
3 Bejan A, Fowler A J, Stanescu G. The optimal spacing between horizontal cylinders in a fixed volume cooled by natural convection. Int J Heat Mass Transf, 1995, 38: 2047-2055
[4]
4 Stanescu G, Fowler A J, Bejan A. The optimal spacing of cylinders in free-stream cross-flow forced convection. Int J Heat Mass Transf, 1996, 39: 311-317
[5]
5 Bejan A. Street network theory of organization in nature. J Adv Transp, 1996, 30: 85-107
[6]
6 Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Transf, 1997, 40: 799-816
[7]
7 Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: Cambridge University Press, 2000
[8]
8 Bejan A, Lorente S. Design with Constructal Theory. New York: Wiley, 2008
10 Luo L. Heat and Mass Transfer Intensification and Shape Optimization. New York: Springer, 2013
[11]
11 Bejan A, Lorente S. Constructal law of design and evolution: Physics, biology, technology, and society. J Appl Phys, 2013, 113: 151301
[12]
12 Bello-Ochende T, Bejan A. Constructal multi-scale cylinders with natural convection. Int J Heat Mass Transf, 2005, 48: 4300-4306
[13]
13 Bello-Ochende T, Bejan A. Constructal multi-scale cylinders in cross-flow. Int J Heat Mass Transf, 2005, 48: 1373-1383
[14]
14 Bello-Ochende T, Meyer J P. Maximum heat transfer density rate enhancement from cylinders rotating in natural convection. Int Commun Heat Mass Transf, 2011, 38: 1354-1359
[15]
15 Joucaviel M, Gosselin L, Bello-Ochende T. Maximum heat transfer density with rotating cylinders aligned in cross-flow. Int Commun Heat Mass Transf, 2008, 35: 557-564
[16]
16 Page L G, Bello-Ochende T, Meyer J P. Constructal multi scale cylinders with rotation cooled by natural convection. Int J Heat Mass Transf, 2013, 57: 345-355
[17]
17 Jung J, Lorente S, Anderson R, et al. Configuration of heat sources or sinks in a finite volume. J Appl Phys, 2011, 110: 023502
24 Cheng X, Liang X. Entransy, entransy dissipation and entransy loss for analyses of heat transfer and heat-work conversion processes. J Therm Sci Technol, 2013, 8: 337-352
[25]
25 陈林根.(火积)理论及其应用的进展. 科学通报, 2012, 57: 2815-2835
[26]
26 Chen Q, Liang X. Entransy theory for the optimization of heat transfer—A review and update. Int J Heat Mass Transf, 2013, 63: 65-81
[27]
27 Wu J, Guo Z. Application of entransy analysis in self-heat recuperation technology. Ind Eng Chem Res, 2014, 53: 1274-1285
[28]
28 Cheng X, Liang X. Application of entransy optimization to one-stream series-wound and parallel heat exchanger networks. Heat Transf Eng, 2014, 35: 985-995
31 Chen L, Xiao Q, Xie Z, et al. T-shaped assembly of fins with constructal entransy dissipation rate minimization. Int Commun Heat Mass Transf, 2012, 39: 1556-1562
[32]
32 Chen L, Xiao Q, Xie Z, et al. Constructal entransy dissipation rate minimization for tree-shaped assembly of fins. Int J Heat Mass Transf, 2013, 67: 506-513
37 Feng H, Chen L, Xie Z, et al. Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall. Int Commun Heat Mass Transf, 2014, 52: 26-32