全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

基于共同用户的跨网络分析:社交媒体大数据中的多源问题

DOI: 10.1360/N972014-00292, PP. 3554-3560

Keywords: 大数据,社交媒体,多源,跨网络分析,共同用户

Full-Text   Cite this paper   Add to My Lib

Abstract:

社交媒体大数据是大数据的重要组成部分.与大数据的“4V”特性对应,本文主要讨论社交媒体大数据中的Variety-多源问题.社交媒体的多源主要体现在不同社交媒体网络所关注的异构用户行为信息,理解社交媒体多源现象对于社交媒体分析和社交媒体大数据的深度应用具有重要意义.社交媒体数据具有来源于用户、服务于用户的特点.我们提出从多个社交媒体网络的共同用户入手来进行社交媒体多源分析(1)跨网络用户建模,整合分散在不同社交媒体网络的行为信息得到完整用户模型,进行个性化服务;(2)多源数据知识关联,以共同用户与多源数据的交互作为桥梁,挖掘多源数据知识关联,服务于社交媒体协同应用.

References

[1]  1 Xiang L, Yuan Q, Zhao S, et al. Temporal recommendation on graphs via long-and short-term preference fusion. In: Bharat R, Balaji K, Andrew T, et al., eds. Proceedings of the 16th Association For Computing Machinery SIGKDD International Conference on Knowledge Discover. Washington DC: Association For Computing Machinery, 2010. 723-732
[2]  2 Zhao X, Li G, Wang M, et al. Integrating rich information for video recommendation with multi-task rank aggregation. In: Sethuraman P, Balakrishnan P, Hari S, et al., eds. Proceedings of the 19th International Conference on Multimedia. Scottsdale: Association For Computing Machinery, 2011. 1521-1524
[3]  3 Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. J Mach Learn Res, 2003, 3: 993-1022
[4]  4 Kwak H, Lee C, Park H, et al. What is Twitter, a social network or a news media? In: Michael R, Paul J, Juliana F, et al., eds. Proceedings of the 19th International Conference on World Wide Web. Raleigh: Association For Computing Machinery, 2010. 591-600
[5]  5 Cha M, Mislove A, Gummadi K P. A measurement-driven analysis of information propagation in the flickr social network. In: Michael R, Paul J, Juliana F, et al., eds. Proceedings of the 19th International Conference on World Wide Web. Raleigh: Association For Computing Machinery, 2010. 721-730
[6]  6 Ahn Y Y, Han S, Kwak H, et al. Analysis of topological characteristics of huge online social networking services. In: Carey L W, Mary E Z, Peter F, et al, eds. Proceedings of the 16th International Conference on World Wide Web. Banff: Association For Computing Machinery, 2007. 835-844
[7]  7 Lerman K, Ghosh R. Information contagion: An empirical study of the spread of news on digg and twitter social networks. In: William W C, Samuel G, eds. Proceedings of the Fourth International Conference on Weblogs and Social Media. Washington D C: AAAI Press, 2010. 90-97
[8]  9 Zhong E, Fan W, Yang Q. User behavior learning and transfer in composite social networks. Association For Computing Machinery Transactions on Knowledge Discovery from Data (TKDD), 2014, 1: article 6
[9]  10 Zhong E, Fan W, Zhu Y, et al. Modeling the dynamics of composite social networks. In: Inderjit S D, Yehuda K, Rayid G, et al., eds. Proceedings of the 19th Association For Computing Machinery SIGKDD International Conference on Knowledge Discover. Chicago: Association For Computing Machinery, 2013. 937-945
[10]  15 Abel F, Araújo S, Gao Q, et al. Analyzing cross-system user modeling on the social web. In: Proceedings of the 2011 IEEE International Conference on Multimedia and Expo. Barcelona: IEEE Computer Society, 2011. 28-43
[11]  16 Szomszor M N, Cantador I, Alani H. Correlating user profiles from multiple folksonomies. In: Hypertext and Hypermedia. Boston: Academic Press, 2008, 2: 33-42
[12]  17 Szomszor M, Alani H, Cantador I, et al. Semantic modelling of user interests based on cross-folksonomy analysis. The Semantic Web-ISWC, 2008, 1: 632-648
[13]  18 Yan M, Sang J, Mei T, et al. Friend transfer: Cold-start friend recommendation with cross-platform transfer learning of social knowledge. In: Proceedings of the 2011 IEEE International Conference on Multimedia and Expo. Barcelona: IEEE Computer Society, 2011. 1-6
[14]  19 Yuan N J, Zhang F, Lian D, et al. We know how you live: Exploring the spectrum of urban lifestyles. In: Amr E A, Balachander K, eds. Proceedings of the 1st Conference on Online Social Networks. Chicago: Association For Computing Machinery, 2013. 3-14
[15]  8 Magnani M, Rossi L. The ML-model for multi-layer social networks. In: Zhao X, Li G, eds. Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining. Washington D C: IEEE Computer Society, 2011. 5-12
[16]  11 Zhong E, Xiang E W, Fan, et al. Friendship prediction in composite social networks. arXiv preprint arXiv:1402.4033
[17]  12 Narayanan A, Shmatikov V. De-anonymizing social networks. IEEE Symposium on Security and Privacy, 2009. 173-187
[18]  13 Carmagnola F, Cena F. User identification for cross-system personalisation. Inform Sci, 2009, 1: 16-32
[19]  14 Ding X, Zhang L, Wan Z., et al. De-anonymizing dynamic social networks. In: Proceedings of the Global Communications Conference. Houston: IEEE Computer Society, 2011. 1-6
[20]  21 Yang J, Wang Z, Lin Z, et al. Coupled dictionary training for image super-resolution. IEEE Trans Image Process, 2012, 8: 3467-3478
[21]  20 Blei D M, Jordan M I. Modeling annotated data. In: Proceedings of the 26th Annual International Association For Computing Machinery SIGIR Conference on Research and Development in Information Retrieval. Toronto: Association For Computing Machinery, 2003. 127-134

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133