1 Filippenko A V. Optical spectra of supernovae. Annu Rev Astron Astrophys, 1997, 35: 309-355
[2]
2 Panagia N. In High Energy Phenomena Around Collapsed Stars. In: Pacini F, ed. Dordrecht, Holland: Springer, 1987. 34-50
[3]
5 Crowther P A. Physical properties of Wolf-Rayet stars. Annu Rev Astron Astrophys, 2007, 45: 177-219
[4]
6 Parrent J, Friesen B, Parthasarathy M. A review of typeⅠa supernova spectra. Astrophys Space Sci, 2014, 351: 1-52
[5]
10 Li W, Chornock R, Leaman J, et al. Nearby supernova rates from the Lick Observatory Supernova Search-III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. Mon Not Roy Astron Soc, 2011, 412: 1473-1507
[6]
14 Wang X, Filippenko A V, Ganeshalingam M, et al. Improved distances to typeⅠa supernovae with two spectroscopic subclasses. Astrophys J, 2009, 699: L139-L143
[7]
15 Wang X, Wang L, Filippenko A V, et al. Evidence for two distinct populations of typeⅠa supernovae. Science, 2013, 340: 170-173
[8]
17 Filippenko A V, Richmond M W, Branch D, et al. The subluminous, spectroscopically peculiar typeⅠa supernova 1991bg in the elliptical galaxy NGC 4374. Astron J, 1992, 104: 1543-1556
[9]
18 Howell D A, Sullivan M, Nugent P E, et al. The typeⅠa supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature, 2006, 443: 308-311
[10]
19 Silverman J M, Ganeshalingam M, Li W, et al. Fourteen months of observations of the possible super-Chandrasekhar mass typeⅠa supernova 2009dc. Mon Not Roy Astron Soc, 2011, 410: 585-611
[11]
20 Taubenberger S, Benetti S, Childress M, et al. High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios. Mon Not Roy Astron Soc, 2011, 412: 2735-2762
[12]
21 Scalzo R A, Aldering G, Antilogus P, et al. Nearby supernova factory observations of SN 2007if: First total mass measurement of a super- Chandrasekhar-mass progenitor. Astrophys J, 2010, 713: 1073-1094
[13]
22 Li W, Filippenko A V, Chornock R, et al. SN 2002cx: The most peculiar known typeⅠa supernova. Publ Astron Soc Pac, 2003, 115: 453-473
[14]
27 Patat F, Chandra P, Chevalier R, et al. Detection of circumstellar material in a normal typeⅠa supernova. Science, 2007, 317: 924
[15]
28 Sternberg A, Gal-Yam A, Simon J D, et al. Circumstellar material in typeⅠa supernovae via sodium absorption features. Science, 2011, 333: 856
[16]
33 Hachisu I, Kato M, Nomoto K. A new model for progenitor systems of typeⅠa supernovae. Astrophys J, 1996, 470: L97
[17]
34 Wang B, Han Z. Companion stars of typeⅠa supernovae and hypervelocity stars. Astron Astrophys, 2009, 508: L27-L30
[18]
37 Iben I, Tutukov A V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). Astrophys J Suppl Ser, 1984, 54: 335-372
[19]
38 Webbink R. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys J, 1984, 277: 355-360
[20]
39 Yungelson L R, Livio M, Tutukov A V. Are the observed frequencies of double degenerates and SNⅠa contradictory? Astrophys J, 1994, 420: 336-340
[21]
40 Napiwotzki R, Karl C A, Nelemans G, et al. Binary white dwarfs in the supernovaⅠa progenitor survey. Astronom Soc Pacific, 2007, 372: 387 41 Wang B, Han Z. The helium star donor channel for the progenitors of typeⅠa supernovae with different metallicities. Astron Astrophys, 2010, 515: A88-A93
[22]
44 Mannucci F, Della V M, Panagia N, et al. The supernova rate per unit mass. Astron Astrophys, 2005, 433: 807-814
[23]
45 Scannapieco E, Bildsten L. The typeⅠa supernova rate. Astrophys J, 2005, 629: L85-L88
[24]
50 Bedin L R, Ruiz-Lapuente P, González H J I, et al. Improved Hubble Space Telescope proper motions for Tycho-G and other stars in the remnant of Tycho's Supernova 1572. Mon Not Roy Astron Soc, 2014, 439: 354-371
[25]
51 Kerzendorf W E, Yong D, Schmidt B P, et al. A high-resolution spectroscopic search for the remaining donor for Tycho's supernova. Astrophys J, 2013, 774: 99-117
[26]
52 González H J I, Ruiz-Lapuente P, Tabernero H M, et al. No surviving evolved companions of the progenitor of SN 1006. Nature, 2012, 489: 533-536
[27]
53 Schaefer B E, Pagnotta A. An absence of ex-companion stars in the typeⅠa supernova remnant SNR 0509-67.5. Nature, 2012, 481: 164-166
[28]
54 Kasen D. Seeing the collision of a supernova with its companion star. Astrophys J, 2010, 708: 1025-1031
[29]
55 Wang X, Wang L, Filippenko A V, et al. Evidence for typeⅠa supernova diversity from ultraviolet observations with the Hubble Space Telescope. Astrophys J, 2012, 749: 126-142
[30]
56 Foley R J, Challis P J, Filippenko A V, et al. Very early ultraviolet and optical observations of the typeⅠa supernova 2009ig. Astrophys J, 2012, 744: 38-52
[31]
61 Wang L, Wheeler J C, Li Z, et al. Broadband polarimetry of supernovae: SN 1994D, SN 1994Y, SN 1994ae, SN 1995D, and SN 1995H. Astrophys J, 1996, 467: 435
[32]
62 Wang L, Baade D, H?flich P, et al. Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a normal typeⅠa supernova. Astrophys J, 2003, 591: 1110-1128
[33]
63 Wang L, Baade D, Patat F. Spectropolarimetric diagnostics of thermonuclear supernova explosions. Science, 2007, 315: 212
[34]
64 Tanaka M, Kawabata K S, Yamanaka M, et al. Spectropolarimetry of extremely luminous typeⅠa supernova 2009dc: Nearly spherical explosion of super-Chandrasekhar mass white dwarf. Astrophys J, 2010, 714: 1209-1216
[35]
65 Maund J R, H?flich P, Patat F, et al. The unification of asymmetry signatures of typeⅠa supernovae. Astrophys J, 2010, 725: L168-L171
[36]
67 Branch D, Drucker W, Jeffery D J. Differences among expansion velocities of typeⅠa supernovae. Astrophys J, 1988, 330: L117-L118
[37]
68 Nomoto K. Accreting white dwarf models for type 1 supernovae. II—Off-center detonation supernovae. Astrophys J, 1982, 257: 780-792
[38]
74 Nomoto K, Iben I. Carbon ignition in a rapidly accreting degenerate dwarf—A clue to the nature of the merging process in close binaries. Astrophys J, 1985, 297: 531-537
[39]
75 Meng X, Podsiadlowski P. The birth rate of SNeⅠa from hybrid CONe white dwarfs. Astrophys J, 2014, 789: L45-L49
[40]
3 Branch D, Venkatakrishna K L. On the ultraviolet spectra of type I supernovae. Astrophys J, 1986, 306: L21-L23
[41]
4 Heger A, Fryer C L, Woosley S E, et al. How massive single stars end their life. Astrophys J, 2003, 591: 288-300
[42]
7 Phillips M M. The absolute magnitudes of typeⅠa supernovae. Astrophys J, 1993, 413: L105-L108
[43]
8 Saha A, Sandage A, Tammann G A, et al. Cepheid calibration of the peak brightness of typeⅠa supernovae. IX. SN 1989B in NGC 3627. Astrophys J, 1999, 522: 802-838
[44]
9 Gibson B K, Stetson P B, Freedman W L, et al. The Hubble Space Telescope Key Project on the extragalactic distance scale. XXV. A recalibration of Cepheid distances to typeⅠa supernovae and the value of the Hubble constant. Astrophys J, 2000, 529: 723-744
[45]
11 Benetti S, Cappellaro E, Mazzali P A, et al. The diversity of typeⅠa supernovae: Evidence for systematics? Astrophys J, 2005, 623: 1011-1016
[46]
12 Branch D, Dang L C, Hall N, et al. Comparative direct analysis of typeⅠa supernova spectra. II. Maximum light. Publ Astron Soc Pac, 2006, 118: 560-571
[47]
13 Branch D, Dang L C, Baron E. Comparative direct analysis of typeⅠa supernova spectra. V. Insights from a larger sample and quantitative subclassification. Publ Astron Soc Pac, 2009, 121: 238-247
[48]
16 Filippenko A V, Richmond M W, Matheson T, et al. The peculiar typeⅠa SN 1991T—Detonation of a white dwarf? Astrophys J, 1992, 384: L15-L18
[49]
23 Foley R J, Challis P J, Chornock R, et al. Type Iax supernovae: A new class of stellar explosion. Astrophys J, 2013, 767: 57-84
[50]
24 White C J, Kasliwal M M, Nugent P E, et al. Slow-speed supernovae from the Palomar Transient Factory: Two channels. 2014, arXiv: 1405. 7409
[51]
25 Hamuy M, Phillips M M, Suntzeff N B, et al. An asymptotic-giant-branch star in the progenitor system of a typeⅠa supernova. Nature, 2003, 424: 651-654
[52]
26 Benetti S, Cappellaro E, Turatto M, et al. Supernova 2002ic: The collapse of a stripped-envelope, massive star in a dense medium? Astrophys J, 2006, 653: L129-L132
[53]
29 Dilday B, Howell D A, Cenko S B, et al. PTF 11kx: A type Ia supernova with a symbiotic nova progenitor. Science, 2012, 337: 942
[54]
30 Li X D, van den Heuvel E P J. Evolution of white dwarf binaries: Supersoft X-ray sources and progenitors of typeⅠa supernovae. Astron Astrophys, 1997, 322: L9-L12
[55]
31 Langer N, Deutschmann A, Wellstein S, et al. The evolution of main sequence star + white dwarf binary systems towards typeⅠa supernovae. Astron Astrophys, 2000, 362: 1046-1064
[56]
32 Hachisu I, Kato M, Nomoto K. A wide symbiotic channel to typeⅠa supernovae. Astrophys J, 1999, 522: 487-503
[57]
35 Wang B, Meng X, Chen X, et al. The helium star donor channel for the progenitors of typeⅠa supernovae. Mon Not Roy Astron Soc, 2009, 395: 847-854
[58]
36 Wang B, Han Z. Progenitors of typeⅠa supernovae. New Astron Rev, 2012, 56: 122-141
[59]
42 Pakmor R, Kromer M, Taubenberger S, et al. Normal typeⅠa supernovae from violent mergers of white dwarf binaries. Astrophys J, 2012, 747: L10-L14
[60]
43 Nomoto K, Iben I. Carbon ignition in a rapidly accreting degenerate dwarf—A clue to the nature of the merging process in close binaries. Astrophys J, 1985, 297: 531-537
[61]
46 Neill J D, Sullivan M, Balam D, et al. The typeⅠa supernova rate at z~0.5 from the supernova legacy survey. Astron J, 2006, 132: 1126-1145
[62]
47 Li W, Bloom J S, Podsiadlowski P, et al. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature, 2011, 480: 348-350
[63]
48 Brown P, Dawson K S, de Pasquale M, et al. A swift look at SN 2011fe: The earliest ultraviolet observations of a typeⅠa supernova. Astrophys J, 2012, 753: 22
[64]
49 Kerzendorf W E, Schmidt B P, Laird J B, et al. Hunting for the progenitor of SN 1006: High-resolution spectroscopic search with the FLAMES instrument. Astrophys J, 2012, 759: 7-12
[65]
57 Khokhlov A M. Delayed detonation model for typeⅠa supernovae. Astron Astrophys, 1991, 245: 114-128
[66]
58 Reinecke M, Hillebrandt W, Niemeyer J C. Three-dimensional simulations of typeⅠa supernovae. Astron Astrophys, 2002, 391: 1167-1172
[67]
59 Gamezo V N, Khokhlov A M, Oran E S. Three-dimensional delayed-detonation model of typeⅠa supernovae. Astrophys J, 2005, 623: 337-346
[68]
60 H?flich P. Asphericity effects in scattering dominated photospheres. Astron Astrophys, 1991, 246: 481
[69]
66 Mueller E, H?flich P, Khokhlov A. TypeⅠa supernovae—Gamma-rays as predicted by delayed detonation models and SN1991T. Astron Astrophys, 1991, 249: L1-L4
[70]
69 Woosley S E, Taam R E, Weaver T A. Models for type I supernova. I—Detonations in white dwarfs. Astrophys J, 1986, 301: 601-623
[71]
70 Livne E. Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae. Astrophys J, 1990, 354: L53-L55
[72]
71 H?flich P, Khokhlov A. Explosion models for typeⅠa supernovae: A comparison with observed light curves, distances, H 0, and Q 0. Astrophys J, 1996, 457: 500
[73]
72 Sim S A, R?pke F K, Hillebrandt W, et al. Detonations in sub-Chandrasekhar-mass C+O white dwarfs. Astrophys J, 2010, 714: L52-L57
[74]
73 Woosley S E. Supernovae. In: Petschek A G, ed. New York: Springer, 1990. 182
[75]
76 Wang B, Justham S, Han Z. Producing type Iax supernovae from a specific class of helium-ignited WD explosions. Astron Astrophys, 2013, 559: 94-101
[76]
77 Yoon S C, Langer N. On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses. Astron Astrophys, 2005, 435: 967-985
[77]
78 Piro A L. The internal shear of typeⅠa supernova progenitors during accretion and simmering. Astrophys J, 2008, 679: 616-625
[78]
79 Das U, Mukhopadhyay B. New mass limit for white dwarfs: Super-Chandrasekhar typeⅠa supernova as a new standard candle. Phys Rev Lett, 2013, 110: 071102
[79]
80 Hachisu I, Kato M, Saio H, et al. A single degenerate progenitor model for typeⅠa supernovae highly exceeding the Chandrasekhar mass limit. Astrophys J, 2012, 744: 69-83