全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

宇宙的“标准烛光”:Ⅰa型超新星的观测与理论

DOI: 10.1360/N972014-00610, PP. 2-15

Keywords: Ⅰa型超新星,前身星,距离尺度,宇宙学参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ⅰa型超新星作为宇宙的“标准烛光”被用来测距并测定宇宙的膨胀历史以及确定暗能量的性质.一般认为Ⅰa型超新星可能源于接近1.4M⊙碳氧白矮星的热核爆炸,但其爆发机制及前身星的性质还存在争论.这使得Ⅰa超新星距离测量可能存在的一些系统误差无法得到澄清.本文综述了当前Ⅰa型超新星的观测多样性特征以及相关的爆发机制和前身星模型.Ⅰa超新星的光谱和测光性质的弥散不能用单一的模型单简并或者双简并模型+几何效应来解释,这表明可能有多种渠道产生这类爆发.未来利用它们开展精确宇宙学研究需要对不同亚类的爆发进行区分和认证.

References

[1]  1 Filippenko A V. Optical spectra of supernovae. Annu Rev Astron Astrophys, 1997, 35: 309-355
[2]  2 Panagia N. In High Energy Phenomena Around Collapsed Stars. In: Pacini F, ed. Dordrecht, Holland: Springer, 1987. 34-50
[3]  5 Crowther P A. Physical properties of Wolf-Rayet stars. Annu Rev Astron Astrophys, 2007, 45: 177-219
[4]  6 Parrent J, Friesen B, Parthasarathy M. A review of typeⅠa supernova spectra. Astrophys Space Sci, 2014, 351: 1-52
[5]  10 Li W, Chornock R, Leaman J, et al. Nearby supernova rates from the Lick Observatory Supernova Search-III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. Mon Not Roy Astron Soc, 2011, 412: 1473-1507
[6]  14 Wang X, Filippenko A V, Ganeshalingam M, et al. Improved distances to typeⅠa supernovae with two spectroscopic subclasses. Astrophys J, 2009, 699: L139-L143
[7]  15 Wang X, Wang L, Filippenko A V, et al. Evidence for two distinct populations of typeⅠa supernovae. Science, 2013, 340: 170-173
[8]  17 Filippenko A V, Richmond M W, Branch D, et al. The subluminous, spectroscopically peculiar typeⅠa supernova 1991bg in the elliptical galaxy NGC 4374. Astron J, 1992, 104: 1543-1556
[9]  18 Howell D A, Sullivan M, Nugent P E, et al. The typeⅠa supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature, 2006, 443: 308-311
[10]  19 Silverman J M, Ganeshalingam M, Li W, et al. Fourteen months of observations of the possible super-Chandrasekhar mass typeⅠa supernova 2009dc. Mon Not Roy Astron Soc, 2011, 410: 585-611
[11]  20 Taubenberger S, Benetti S, Childress M, et al. High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios. Mon Not Roy Astron Soc, 2011, 412: 2735-2762
[12]  21 Scalzo R A, Aldering G, Antilogus P, et al. Nearby supernova factory observations of SN 2007if: First total mass measurement of a super- Chandrasekhar-mass progenitor. Astrophys J, 2010, 713: 1073-1094
[13]  22 Li W, Filippenko A V, Chornock R, et al. SN 2002cx: The most peculiar known typeⅠa supernova. Publ Astron Soc Pac, 2003, 115: 453-473
[14]  27 Patat F, Chandra P, Chevalier R, et al. Detection of circumstellar material in a normal typeⅠa supernova. Science, 2007, 317: 924
[15]  28 Sternberg A, Gal-Yam A, Simon J D, et al. Circumstellar material in typeⅠa supernovae via sodium absorption features. Science, 2011, 333: 856
[16]  33 Hachisu I, Kato M, Nomoto K. A new model for progenitor systems of typeⅠa supernovae. Astrophys J, 1996, 470: L97
[17]  34 Wang B, Han Z. Companion stars of typeⅠa supernovae and hypervelocity stars. Astron Astrophys, 2009, 508: L27-L30
[18]  37 Iben I, Tutukov A V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). Astrophys J Suppl Ser, 1984, 54: 335-372
[19]  38 Webbink R. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys J, 1984, 277: 355-360
[20]  39 Yungelson L R, Livio M, Tutukov A V. Are the observed frequencies of double degenerates and SNⅠa contradictory? Astrophys J, 1994, 420: 336-340
[21]  40 Napiwotzki R, Karl C A, Nelemans G, et al. Binary white dwarfs in the supernovaⅠa progenitor survey. Astronom Soc Pacific, 2007, 372: 387 41 Wang B, Han Z. The helium star donor channel for the progenitors of typeⅠa supernovae with different metallicities. Astron Astrophys, 2010, 515: A88-A93
[22]  44 Mannucci F, Della V M, Panagia N, et al. The supernova rate per unit mass. Astron Astrophys, 2005, 433: 807-814
[23]  45 Scannapieco E, Bildsten L. The typeⅠa supernova rate. Astrophys J, 2005, 629: L85-L88
[24]  50 Bedin L R, Ruiz-Lapuente P, González H J I, et al. Improved Hubble Space Telescope proper motions for Tycho-G and other stars in the remnant of Tycho's Supernova 1572. Mon Not Roy Astron Soc, 2014, 439: 354-371
[25]  51 Kerzendorf W E, Yong D, Schmidt B P, et al. A high-resolution spectroscopic search for the remaining donor for Tycho's supernova. Astrophys J, 2013, 774: 99-117
[26]  52 González H J I, Ruiz-Lapuente P, Tabernero H M, et al. No surviving evolved companions of the progenitor of SN 1006. Nature, 2012, 489: 533-536
[27]  53 Schaefer B E, Pagnotta A. An absence of ex-companion stars in the typeⅠa supernova remnant SNR 0509-67.5. Nature, 2012, 481: 164-166
[28]  54 Kasen D. Seeing the collision of a supernova with its companion star. Astrophys J, 2010, 708: 1025-1031
[29]  55 Wang X, Wang L, Filippenko A V, et al. Evidence for typeⅠa supernova diversity from ultraviolet observations with the Hubble Space Telescope. Astrophys J, 2012, 749: 126-142
[30]  56 Foley R J, Challis P J, Filippenko A V, et al. Very early ultraviolet and optical observations of the typeⅠa supernova 2009ig. Astrophys J, 2012, 744: 38-52
[31]  61 Wang L, Wheeler J C, Li Z, et al. Broadband polarimetry of supernovae: SN 1994D, SN 1994Y, SN 1994ae, SN 1995D, and SN 1995H. Astrophys J, 1996, 467: 435
[32]  62 Wang L, Baade D, H?flich P, et al. Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a normal typeⅠa supernova. Astrophys J, 2003, 591: 1110-1128
[33]  63 Wang L, Baade D, Patat F. Spectropolarimetric diagnostics of thermonuclear supernova explosions. Science, 2007, 315: 212
[34]  64 Tanaka M, Kawabata K S, Yamanaka M, et al. Spectropolarimetry of extremely luminous typeⅠa supernova 2009dc: Nearly spherical explosion of super-Chandrasekhar mass white dwarf. Astrophys J, 2010, 714: 1209-1216
[35]  65 Maund J R, H?flich P, Patat F, et al. The unification of asymmetry signatures of typeⅠa supernovae. Astrophys J, 2010, 725: L168-L171
[36]  67 Branch D, Drucker W, Jeffery D J. Differences among expansion velocities of typeⅠa supernovae. Astrophys J, 1988, 330: L117-L118
[37]  68 Nomoto K. Accreting white dwarf models for type 1 supernovae. II—Off-center detonation supernovae. Astrophys J, 1982, 257: 780-792
[38]  74 Nomoto K, Iben I. Carbon ignition in a rapidly accreting degenerate dwarf—A clue to the nature of the merging process in close binaries. Astrophys J, 1985, 297: 531-537
[39]  75 Meng X, Podsiadlowski P. The birth rate of SNeⅠa from hybrid CONe white dwarfs. Astrophys J, 2014, 789: L45-L49
[40]  3 Branch D, Venkatakrishna K L. On the ultraviolet spectra of type I supernovae. Astrophys J, 1986, 306: L21-L23
[41]  4 Heger A, Fryer C L, Woosley S E, et al. How massive single stars end their life. Astrophys J, 2003, 591: 288-300
[42]  7 Phillips M M. The absolute magnitudes of typeⅠa supernovae. Astrophys J, 1993, 413: L105-L108
[43]  8 Saha A, Sandage A, Tammann G A, et al. Cepheid calibration of the peak brightness of typeⅠa supernovae. IX. SN 1989B in NGC 3627. Astrophys J, 1999, 522: 802-838
[44]  9 Gibson B K, Stetson P B, Freedman W L, et al. The Hubble Space Telescope Key Project on the extragalactic distance scale. XXV. A recalibration of Cepheid distances to typeⅠa supernovae and the value of the Hubble constant. Astrophys J, 2000, 529: 723-744
[45]  11 Benetti S, Cappellaro E, Mazzali P A, et al. The diversity of typeⅠa supernovae: Evidence for systematics? Astrophys J, 2005, 623: 1011-1016
[46]  12 Branch D, Dang L C, Hall N, et al. Comparative direct analysis of typeⅠa supernova spectra. II. Maximum light. Publ Astron Soc Pac, 2006, 118: 560-571
[47]  13 Branch D, Dang L C, Baron E. Comparative direct analysis of typeⅠa supernova spectra. V. Insights from a larger sample and quantitative subclassification. Publ Astron Soc Pac, 2009, 121: 238-247
[48]  16 Filippenko A V, Richmond M W, Matheson T, et al. The peculiar typeⅠa SN 1991T—Detonation of a white dwarf? Astrophys J, 1992, 384: L15-L18
[49]  23 Foley R J, Challis P J, Chornock R, et al. Type Iax supernovae: A new class of stellar explosion. Astrophys J, 2013, 767: 57-84
[50]  24 White C J, Kasliwal M M, Nugent P E, et al. Slow-speed supernovae from the Palomar Transient Factory: Two channels. 2014, arXiv: 1405. 7409
[51]  25 Hamuy M, Phillips M M, Suntzeff N B, et al. An asymptotic-giant-branch star in the progenitor system of a typeⅠa supernova. Nature, 2003, 424: 651-654
[52]  26 Benetti S, Cappellaro E, Turatto M, et al. Supernova 2002ic: The collapse of a stripped-envelope, massive star in a dense medium? Astrophys J, 2006, 653: L129-L132
[53]  29 Dilday B, Howell D A, Cenko S B, et al. PTF 11kx: A type Ia supernova with a symbiotic nova progenitor. Science, 2012, 337: 942
[54]  30 Li X D, van den Heuvel E P J. Evolution of white dwarf binaries: Supersoft X-ray sources and progenitors of typeⅠa supernovae. Astron Astrophys, 1997, 322: L9-L12
[55]  31 Langer N, Deutschmann A, Wellstein S, et al. The evolution of main sequence star + white dwarf binary systems towards typeⅠa supernovae. Astron Astrophys, 2000, 362: 1046-1064
[56]  32 Hachisu I, Kato M, Nomoto K. A wide symbiotic channel to typeⅠa supernovae. Astrophys J, 1999, 522: 487-503
[57]  35 Wang B, Meng X, Chen X, et al. The helium star donor channel for the progenitors of typeⅠa supernovae. Mon Not Roy Astron Soc, 2009, 395: 847-854
[58]  36 Wang B, Han Z. Progenitors of typeⅠa supernovae. New Astron Rev, 2012, 56: 122-141
[59]  42 Pakmor R, Kromer M, Taubenberger S, et al. Normal typeⅠa supernovae from violent mergers of white dwarf binaries. Astrophys J, 2012, 747: L10-L14
[60]  43 Nomoto K, Iben I. Carbon ignition in a rapidly accreting degenerate dwarf—A clue to the nature of the merging process in close binaries. Astrophys J, 1985, 297: 531-537
[61]  46 Neill J D, Sullivan M, Balam D, et al. The typeⅠa supernova rate at z~0.5 from the supernova legacy survey. Astron J, 2006, 132: 1126-1145
[62]  47 Li W, Bloom J S, Podsiadlowski P, et al. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature, 2011, 480: 348-350
[63]  48 Brown P, Dawson K S, de Pasquale M, et al. A swift look at SN 2011fe: The earliest ultraviolet observations of a typeⅠa supernova. Astrophys J, 2012, 753: 22
[64]  49 Kerzendorf W E, Schmidt B P, Laird J B, et al. Hunting for the progenitor of SN 1006: High-resolution spectroscopic search with the FLAMES instrument. Astrophys J, 2012, 759: 7-12
[65]  57 Khokhlov A M. Delayed detonation model for typeⅠa supernovae. Astron Astrophys, 1991, 245: 114-128
[66]  58 Reinecke M, Hillebrandt W, Niemeyer J C. Three-dimensional simulations of typeⅠa supernovae. Astron Astrophys, 2002, 391: 1167-1172
[67]  59 Gamezo V N, Khokhlov A M, Oran E S. Three-dimensional delayed-detonation model of typeⅠa supernovae. Astrophys J, 2005, 623: 337-346
[68]  60 H?flich P. Asphericity effects in scattering dominated photospheres. Astron Astrophys, 1991, 246: 481
[69]  66 Mueller E, H?flich P, Khokhlov A. TypeⅠa supernovae—Gamma-rays as predicted by delayed detonation models and SN1991T. Astron Astrophys, 1991, 249: L1-L4
[70]  69 Woosley S E, Taam R E, Weaver T A. Models for type I supernova. I—Detonations in white dwarfs. Astrophys J, 1986, 301: 601-623
[71]  70 Livne E. Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae. Astrophys J, 1990, 354: L53-L55
[72]  71 H?flich P, Khokhlov A. Explosion models for typeⅠa supernovae: A comparison with observed light curves, distances, H 0, and Q 0. Astrophys J, 1996, 457: 500
[73]  72 Sim S A, R?pke F K, Hillebrandt W, et al. Detonations in sub-Chandrasekhar-mass C+O white dwarfs. Astrophys J, 2010, 714: L52-L57
[74]  73 Woosley S E. Supernovae. In: Petschek A G, ed. New York: Springer, 1990. 182
[75]  76 Wang B, Justham S, Han Z. Producing type Iax supernovae from a specific class of helium-ignited WD explosions. Astron Astrophys, 2013, 559: 94-101
[76]  77 Yoon S C, Langer N. On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses. Astron Astrophys, 2005, 435: 967-985
[77]  78 Piro A L. The internal shear of typeⅠa supernova progenitors during accretion and simmering. Astrophys J, 2008, 679: 616-625
[78]  79 Das U, Mukhopadhyay B. New mass limit for white dwarfs: Super-Chandrasekhar typeⅠa supernova as a new standard candle. Phys Rev Lett, 2013, 110: 071102
[79]  80 Hachisu I, Kato M, Saio H, et al. A single degenerate progenitor model for typeⅠa supernovae highly exceeding the Chandrasekhar mass limit. Astrophys J, 2012, 744: 69-83

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133