1 Lindeboom J, Mulder B M, Vos J W, et al. Cellulose microfibril deposition: Coordinated activity at the plant plasma membrane. J Microsc-Oxford, 2008, 231: 192-200
[2]
2 Geitmann A, Emons A M. The cytoskeleton in plant and fungal cell tip growth. J Microsc-Oxford, 2000, 198: 218-245
[3]
3 Miller D D, de Ruijter N C, Emons A M C. From signal to form: Aspects of the cytoskeleton-plasma membrane—Cell wall continuuum in root hair tips. J Exp Bot, 1997, 48: 1881-1896
[4]
4 Zhang Y, Liu C M, Emons A M, et al. The plant exocyst. J Integr Plant Biol, 2010, 52: 138-146
[5]
5 Hsu S C, TerBush D, Abraham M, et al. The exocyst complex in polarized exocytosis. Int Rev Cytol, 2004, 233: 243-265
[6]
6 Munson M, Novick P. The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol, 2006, 13: 577-581
[7]
7 TerBush D R, Maurice T, Roth D, et al. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J, 1996, 15: 6483-6494
[8]
9 Kee Y, Yoo J S, Hazuka C D, et al. Subunit structure of the mammalian exocyst complex. Proc Natl Acad Sci USA, 1997, 94: 14438-14443
[9]
10 Elias M, Drdova E, Ziak D, et al. The exocyst complex in plants. Cell Biol Int, 2003, 27: 199-201
[10]
11 Chong Y T, Gidda S K, Sanford C, et al. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol, 2010, 185: 401-419
[11]
12 Finger F P, Hughes T E, Novick P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell, 1998, 92: 559-571
[12]
13 Guo W, Roth D, Walch-Solimena C, et al. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J, 1999, 18: 1071-1080
[13]
14 Boyd C, Hughes T, Pypaert M, et al. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J Cell Biol, 2004, 167: 889-901
[14]
15 Tsuboi T, Ravier M A, Xie H, et al. Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis. J Biol Chem, 2005, 280: 25565-15570
[15]
16 Vega I E, Hsu S C. The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J Neurosci, 2001, 21: 3839-3848
[16]
20 Synek L, Schlager N, Elias M, et al. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J, 2006, 48: 54-72
[17]
21 ?ársky V, Cvr?ková F, Potocky M, et al. Exocytosis and cell polarity in plants-exocyst and recycling domains. New Phytol, 2009, 183: 255-272
[18]
22 Kent W J. BLAT-The BLAST-like alignment tool. Genome Res, 2002, 12: 656-664
[19]
25 Wright F. The effective number of codons' used in a gene. Gene, 1990, 87: 23-29
[20]
26 Gupta S K, Bhattacharyya T K, Ghosh T C. Synonymous codon usage in Lactococcus lactis: Mutational bias versus translational selection. J Biomol Struct Dyn, 2004, 21: 527-536
[21]
27 Sharp P M, Tuohy T M, Mosurski K R. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res, 1986, 14: 5125-5143
[22]
31 Peixoto L, Zavala A, Romero H, et al. The strength of translational selection for codon usage varies in the three replicons of Sinorhizobium meliloti. Gene, 2003, 320: 109-116
[23]
33 Hamburger Z A, Hamburger A E, West A P Jr, et al. Crystal structure of the S. cerevisiae exocyst component Exo70p. J Mol Biol, 2006, 356: 9-21
[24]
8 TerBush D R, Novick P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J Cell Biol, 1995, 130: 299-312
[25]
17 He B, Xi F, Zhang X, et al. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J, 2007, 26: 4053-4065
[26]
18 Zhang X, Orlando K, He B, et al. Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J Cell Biol, 2008, 180: 145-158
[27]
19 Li S, van Os G M, Ren S, et al. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiol, 2010, 154: 1819-1830
[28]
23 Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731-2739
[29]
24 Zhang L, Jin L G, Luo L, et al, Analysis of nuclear gene codon bias on soybean genome and transcriptome (in Chinese). Acta Agron Sin, 2011, 37: 965-974 [张乐, 金龙国, 罗玲, 等. 大豆基因组和转录组的核基因密码子使用偏好性分析. 作物学报, 2011, 37: 965-
[30]
28 Liu Q, Feng Y, Xue Q. Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa. Mitochondrion, 2004, 4: 313-320
[31]
29 Sau K, Gupta S K, Sau S, et al. Factors influencing synonymous codon and amino acid usage biases in Mimivirus. Biosystems, 2006, 85: 107-113
[32]
30 von Samson-Himmelstjerna G, Harder A, Failing K, et al. Analysis of codon usage in beta-tubulin sequences of helminths. Parasitol Res, 2003, 90: 294-300
[33]
32 Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res, 2000, 28: 2084-2090
[34]
34 Cvrckova F, Grunt M, Bezvoda R, et al. Evolution of the land plant exocyst complexes. Front Plant Sci, 2012, 3: 159
[35]
35 Dellago H, Loscher M, Ajuh P, et al. Exo70, a subunit of the exocyst complex, interacts with SNEV (hPrp19/ hPso4) and is involved in pre-mRNA splicing. Biochem J, 2011, 438: 81-91
[36]
36 Cole RA, Synek L, Zarsky V, et al. SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol, 2005, 138: 2005-2018
[37]
37 Hala M, Cole R, Synek L, et al. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell, 2008, 20: 1330-1345
[38]
38 Fendrych M, Synek L, Pecenkova T, et al. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell, 2010, 22: 3053-3065
[39]
39 Wang J, Ding Y, Wang J, et al. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell, 2010, 22: 4009-4030
[40]
40 International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800
[41]
41 The Arabidopsis Information Resource. The Arabidopsis genome annotation (TAIR10). Nov 17, 2010 https://arabidopsis.org/portals/ genAnnotation/gene_structural_annotation/annotation_data.jsp
[42]
42 Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science, 2002, 296: 92-100
[43]
43 Paterson A H, Bowers J E, Chapman B A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA, 2004, 101: 9903-9908
[44]
44 Guyot R, Keller B. Ancestral genome duplication in rice. Genome, 2004, 47: 610-614
[45]
45 Yu J, Wang J, Lin W, et al. The genomes of Oryza sativa: A history of duplications. PLoS Biol, 2005, 3: e38
[46]
46 The Rice Chromosomes 11 and 12 Sequencing Consortia. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol, 2005, 3: 20
[47]
47 Jacquemin J, Chaparro C, Laudie M, et al. Long-range and targeted ectopic recombination between the two homeologous chromosomes 11 and 12 in Oryza species. Mol Biol Evol, 2011, 28: 3139-3150
[48]
48 Simillion C, Vandepoele K, Van Montagu M C, et al. The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA, 2002. 99: 13627-13632
[49]
49 Bowers J E, Chapman B A, Rong J, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 2003, 422: 433-438
[50]
50 Lynn D J, Singer G A, Hickey D A. Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res, 2002, 30: 4272-4277
[51]
51 Wang H C, Singer G A, Hickey D A. Mutational bias affects protein evolution in flowering plants. Mol Biol Evol, 2004, 21: 90-96
[52]
52 Sharp P M, Li W H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol, 1986, 24: 28-38
[53]
53 Zhang L, Li W H. Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol, 2004, 21: 236-239
[54]
54 Plotkin J B, Robins H, Levine A J. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci USA, 2004, 101: 12588-12591
[55]
55 Hastings K E, Emerson C P Jr. Codon usage in muscle genes and liver genes. J Mol Evol, 1983, 19: 214-218
[56]
56 Semon M, Lobry J R, Duret L. No evidence for tissue-specific adaptation of synonymous codon usage in humans. Mol Biol Evol, 2006, 23: 523-529