全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

基于监测的藏东南然乌湖现代过程:湖泊对冰川融水的响应程度

DOI: 10.1360/N972014-00084, PP. 16-26

Keywords: 然乌湖,冰湖,时空变化,沉积物捕获器,水质多参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原冰川和湖泊广布,湖泊水质、沉积物对冰川变化的响应研究较为匮乏.本文通过藏东南外流区第二大湖泊然乌湖监测的系统设计,研究了湖泊对冰川的响应程度.利用水位计对比然乌湖和各大补给河流水位与水温的关系,发现冰川融水补给河流(曲尺河)对湖泊水量平衡的重要性;利用水质多参数仪器定期监测湖泊和河流的水质参数的时空变化,发现冰川融水对然乌湖温度的时空变化有重要影响,导致水温自上而下降低,流量小的季节湖泊温度差异变小;自上游到下游电导率逐渐升高,显现出离子浓度低的冰川融水对湖泊的冲淡效应,pH随之变化;甚至影响到了叶绿素含量的时空变化;利用在上、中和下湖布设的沉积物捕获器监测沉积通量的时空变化,发现沉积速率非常大,通量具有上湖>中湖>下湖的规律,且时间上各湖具有入湖流量大的季节大于小的季节的规律,说明了冰川融水对然乌湖在沉积量方面的影响是决定性的.总之,然乌湖水体和沉积物能够高信度地响应上游冰川的变化,然乌湖沉积物具有高分辨率反演该区域冰川和气候变化的潜力.

References

[1]  3 Vogel H, Wessels M, Albrecht C, et al. Spatial variability of recent sedimentation in Lake Ohrid (Albania/Macedonia). Biogeosciences, 2010, 7: 3333-3342
[2]  4 Kastner S, Ohlendorf C, Haberzettl T, et al. Southern hemispheric westerlies control the spatial distribution of modern sediments in Laguna Potrok Aike, Argentina. J Paleolimn, 2010, 44: 887-902
[3]  5 Wennrich V, Francke A, Dehnert A, et al. Modern sedimentation patterns in Lake El'gygytgyn, NE Russia, derived from surface sediment and inlet streams samples. Clim Past, 2013, 9: 135-148
[4]  8 Xu H, Hou Z H, An Z S, et al. Major ion chemistry of waters in Lake Qinghai catchments, NE Qinghai-Tibet Plateau, China. Quat Int, 2010, 212: 35-43
[5]  9 Xu H, Liu B, Wu F. Spatial and temporal variations of Rb/Sr ratios of the bulk surface sediments in Lake Qinghai. Geochem Trans, 2010, 11: 3
[6]  11 Jin Z D, Yu J M, Wang S M, et al. Constraints on water chemistry by chemical weathering in the Lake Qinghai catchment, northeastern Tibetan Plateau (China): Clues from Sr and its isotopic geochemistry. Hydrogeol J, 2009, 17: 2037-2048
[7]  13 Li X Z, Liu W G, Xu L M. Carbon isotopes in surface-sediment carbonates of modern Lake Qinghai (Qinghai-Tibet Plateau): Implications for lake evolution in arid areas. Chem Geol, 2012, 300-301: 88-96
[8]  14 Zhu L P, Ju J T, Wang J B, et al. Further discussion about the features of Lake Puma Yum Co, South Tibet, China. Limnology, 2010, 11: 281-287
[9]  16 Ju J T, Zhu L P, Wang J B, et al. Water and sediment chemistry of Lake Pumayum Co, South Tibet, China: Implications for interpreting sediment carbonate. J Paleolimnol, 2010, 43: 463-474
[10]  17 Ju J T, Zhu L P, Feng J L, et al. Hydrodynamic process of Tibetan Plateau lake revealed by grain size: Case study of Pumayum Co. Chin Sci Bull, 2012, 57: 2433-2441 [鞠建廷, 朱立平, 冯金良, 等. 粒度揭示的青藏高原湖泊水动力现代过程: 以藏南普莫雍错为例. 科学通报, 2012, 57: 1775-
[11]  18 Wang J B, Ju J T, Zhu L P. Water chemistry variations of lake and inflowing rivers between pre- and post-monsoon season in Nam Co, Tibet (in Chinese). Sci Geogr Sin, 2013, 33: 90-96 [王君波, 鞠建廷, 朱立平. 季风期前后西藏纳木错湖水及入湖河流水化学特征变化. 地理科学, 2013, 33: 90-
[12]  19 Jin Z D, Zhang F, Li F C, et al. Seasonal and interannual variations of the lake water parameters and particle flux in Lake Qinghai: A time-series sediment trap study (in Chinese). J Earth Environ, 2013, 4: 1306-1313 [金章东, 张飞, 李福春, 等. 青海湖湖水性质、颗粒物沉积通量季节和年际变化——来自沉积物捕获器的研究. 地球环境学报, 2013, 4: 1306-
[13]  20 Jin Z D, Zhang F, You Z F, et al. Time-series sediment trap and a deployment in Lake Qinghai (in Chinese). J Earth Environ, 2013, 4: 1301-1305, 1313 [金章东, 张飞, 游镇烽, 等. 时间序列沉积物捕获器(sediment trap)及其在青海湖的放置. 地球环境学报, 2013, 4: 1301-1305,
[14]  21 Yao T D. Glacial fluctuations and its impacts on lakes in the southern Tibetan Plateau. Chin Sci Bull, 2010, 55: 2071[姚檀栋. 青藏高原南部冰川变化及其对湖泊的影响. 科学通报, 2010, 55:
[15]  22 Yao T D, Li Z G, Yang W, et al. Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chin Sci Bull, 2010, 55: 2072-2078 [姚檀栋, 李治国, 杨威, 等. 雅鲁藏布江流域冰川分布和物质平衡特征及其对湖泊的影响. 科学通报, 2010, 55: 1750-
[16]  23 Zhu L P, Xie M P, Wu Y H. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chin Sci Bull, 2010, 55: 1294-1303 [朱立平, 谢曼平, 吴艳红. 西藏纳木错1971~2004年湖泊面积变化及其原因的定量分析. 科学通报, 2010, 55: 1789-
[17]  24 Xin X D, Yao T D, Ye Q H, et al. Study of the fluctuations of glaciers and lake around the Ranwu Lake of Southeast Tibetan Plateau using remote sensing (in Chinese). J Glaciol Geocryol, 2009, 31: 19-26 [辛晓东, 姚檀栋, 叶庆华, 等. 1980~2005藏东南然乌湖流域冰川湖泊变化研究. 冰川冻土, 2009, 31: 19-
[18]  25 Li J L, Xu B Q, Lin S B, et al. Glacier and climate changes over the past millennium recorded by proglacial sediment sequence from Qiangyong Lake, southern Tibetan Plateau (in Chinese). J Earth Sci Environ, 2011, 33: 402-411 [李久乐, 徐柏青, 林树标, 等. 青藏高原南部枪勇错冰前湖泊沉积记录的近千年来冰川与气候变化. 地球科学与环境学报, 2011, 33: 402-
[19]  30 Larsen D J, Miller G H, Geirsdottir A, et al. A 3000-year varved record of glacier activity and climate change from the proglacial lake Hvitarvatn, Iceland. Quat Sci Rev, 2011, 30: 2715-2731
[20]  31 Leemann A, Niessen F. Holocene glacial activity and climatic variations in the Swiss Alps: Reconstructing a continuous record from proglacial lake sediments. Holocene, 1994, 4: 259-268
[21]  32 Chapron E, Fa?n X, Magand O, et al. Reconstructing recent environmental changes from proglacial lake sediments in the Western Alps (Lake Blanc Huez, 2543 m a.s.l., Grandes Rousses Massif, France). Paleogeogr Paleoclimatol Paleoecol, 2007, 252: 586-600
[22]  33 Guyard H, Chapron E, St-Onge G, et al. Late-Holocene NAO and oceanic forcing on high-altitude proglacial sedimentation (Lake Bramant, Western French Alps). Holocene, 2013, 23: 1163-1172
[23]  34 Simonneau A, Chapron E, Garcon M, et al. Tracking Holocene glacial and high-altitude alpine environments fluctuations from minerogenic and organic markers in proglacial lake sediments (Lake Blanc Huez, Western French Alps). Quat Sci Rev, 2014, 89: 27-43
[24]  35 Rodbell D T, Seltzer G O, Mark B G. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion. Quat Sci Rev, 2008, 27: 1612-1626
[25]  38 Rietti-Shati M, Shemesh A, Karlen W. A 3000-year climatic record from biogenic silica oxygen isotopes in an equatorial high-altitude lake. Science, 1998, 281: 980-982
[26]  39 Leemann A, Niessen F. Varve formation and the climatic record in an Alpine proglacial lake: Calibrating annually-laminated sediments against hydrological and meteorological data. Holocene, 1994, 4: 1-8
[27]  42 Loso M G. Summer temperatures during the Medieval Warm Period and Little Ice Age inferred from varved proglacial lake sediments in southern Alaska. J Paleolimnol, 2009, 41: 117-128
[28]  43 Ariztegui D, Bianchi M M, Masaferro J, et al. Interhemispheric synchrony of Late-glacial climatic instability as recorded in proglacial Lake Mascardi, Argentina. J Quat Sci, 1997, 12: 333-338
[29]  46 Hicks D M, McSaveney M J, Chinn T J H. Sedimentation in Proglacial Ivory Lake, Southern Alps, New Zealand. Arctic Alpine Res, 1990, 22: 26-42
[30]  48 Hinderera M, Kastowski M, Kamelger A, et al. River loads and modern denudation of the Alps—A review. Earth-Sci Rev, 2013, 118: 11-44
[31]  49 Gao Y X, Jiang S K, Zhang Y G, et al. Climate in Tibet (in Chinese). Beijing: Science Press, 1984 [高由禧, 蒋世逵, 张谊光, 等. 西藏气候. 北京: 科学出版社,
[32]  51 Guan Z H, Chen C Y, Ou Y X, et al. Rivers and Lakes in Tibet (in Chinese). Beijing: Science Press, 1984 [关志华, 陈传友, 区裕雄, 等. 西藏河流与湖泊. 北京: 科学出版社,
[33]  52 Serizawa H, Amemiya T, Itoh K. Effects of buoyancy, transparency and zooplankton feeding on surface maxima and deep maxima: Comprehensive mathematical model for vertical distribution in cyanobacterial biomass. Ecol Model, 2010, 221: 2028-2037
[34]  53 Camacho A. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica, 2006, 25: 453-478
[35]  54 Liu Y Q, Yao T D, Zhu L P, et al. Bacterial diversity of freshwater Alpine Lake Puma Yumco on the Tibetan Plateau. Geomicrobiol J, 2009, 26: 131-145
[36]  55 Pothoven S A, Fahnenstiel G L. Recent change in summer chlorophyll a dynamics of southeastern Lake Michigan. J Great Lakes Res, 2013, 39: 287-294
[37]  56 Barbiero R P, Tuchman M L. The deep chlorophyll maximum in Lake Superior Richard. J Great Lakes Res, 2004, 30(Suppl 1): 256-268
[38]  57 Bullard J E, Austin M J. Dust generation on a proglacial floodplain, West Greenland. Aeolian Res, 2011, 3: 43-54
[39]  1 Shen J. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: A review and synthesis of lacustrine sediment archives. Chin Sci Bull, 2013, 58: 17-31 [沈吉. 末次盛冰期以来中国湖泊时空演变及驱动机制研究综述: 来自湖泊沉积的证据. 科学通报, 2012, 57: 3228-
[40]  2 Wang Y, Zhu L P, Wang J B, et al. The spatial distribution and sedimentary processes of organic matter in surface sediments of Nam Co, Central Tibetan Plateau. Chin Sci Bull, 2012, 57: 4753-4764 [汪勇, 朱立平, 王君波, 等. 青藏高原中部纳木错湖泊表层沉积物有机质空间分布及其揭示的沉积过程. 科学通报, 2012, 57: 3090-
[41]  6 Stockhecke M, Anselmetti F S, Meydan A, et al. The annual particle cycle in Lake Van (Turkey). Paleogeogr Paleoclimatol Paleoecol, 2012, 333-334: 148-159
[42]  7 Henderso A G, Holmes J A. Palaeolimnological evidence for environmental change over the past millennium from Lake Qinghai sediments: A review and future research prospective. Quat Int, 2009, 194: 134-147
[43]  10 Xu H, Liu X Y, An Z S, et al. Spatial pattern of modern sedimentation rate of Qinghai Lake and a preliminary estimate of the sediment flux. Chin Sci Bull, 2010, 55: 621-627 [徐海, 刘晓燕, 安芷生, 等. 青海湖现代沉积速率空间分布及沉积通量初步研究. 科学通报, 2010, 55: 384-
[44]  12 Xiao J, Jin Z D, Zhang F, et al. Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau. Environ Earth Sci, 2012, 67: 1331-1344
[45]  15 Zhu L P, Ju J T, Wang Y, et al. Composition, spatial distribution, and environmental significance of water ions in Pumayum Co catchment, southern Tibet. J Geogr Sci, 2010, 20: 109-120
[46]  26 Carrivick J L, Tweed F S. Proglacial lakes: Character, behaviour and geological importance. Quat Sci Rev, 2013, 78: 34-52
[47]  27 McKay N P, Kaufman D S. Holocene climate and glacier variability at Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska. J Paleolimnol, 2009, 41: 143-159
[48]  28 Leonard E M, Reasoner M A. A continuous Holocene glacial record inferred from proglacial lake sediments in Banff National Park, Alberta, Canada. Quatern Res, 1999, 51: 1-13
[49]  29 Bakke J, Lie ?, Nesje A, et al. Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, northern Folgefonna, Western Norway. Holocene, 2005, 15: 161-176
[50]  36 Stansell N D, Polissar P J, Abbott M B. Proglacial lake sediment records reveal Holocene climate changes in the Venezuelan Andes. Quat Sci Rev, 2014, 89: 44-55
[51]  37 Stansell N D, Rodbell D T, Abbott M B. Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru. Quat Sci Rev, 2013, 70: 1-14
[52]  40 Cook T L, Bradley R S, Stoner J S, et al. Five thousand years of sediment transfer in a high arctic watershed recorded in annually laminated sediments from Lower Murray Lake, Ellesmere Island, Nunavut, Canada. J Paleolimnol, 2009, 41: 77-94
[53]  41 Thomas E K, Briner J P. Climate of the past millennium inferred from varved proglacial lake sediments on northeast Baffin Island, Arctic Canada. J Paleolimnol, 2009, 41: 209-224
[54]  44 Ojala A E K, Kosonen E, Weckstr?m J, et al. Seasonal formation of clastic-biogenic varves: The potential for palaeoenvironmental interpretations. GFF, 2013, 135: 237-248
[55]  45 Francus P, Bradley R S, Lewis T, et al. Limnological and sedimentary processes at Sawtooth Lake, Canadian High Arctic, and their influence on varve formation. J Paleolimnol, 2008, 40: 963-985
[56]  47 Liermann S, Beylich A A, van Welden A. Contemporary suspended sediment transfer and accumulation processes in the small proglacial S?trevatnet sub-catchment, B?dalen, western Norway. Geomorphology, 2012, 167-168: 91-101
[57]  50 Yang W, Yao T D, Guo X F, et al. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J Geo- phys Res: Atmos, 2013, 118: 1-16

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133