全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

CNT-Cf/SiC多级增强复合材料微区力学性能

DOI: 10.1360/N972014-00468, PP. 291-300

Keywords: C/SiC复合材料,碳纳米管,多级增强,纳米压痕

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用催化化学气相沉积工艺在炭纤维(Cf)表面原位生长碳纳米管(CNT),经聚合物浸渍-热解(PIP)致密化后制备了CNT强化的Cf/SiC复合材料.结合微米压痕和纳米压痕测试方法在微米、纳米尺度研究了CNT强化的Cf/SiC复合材料界面、微区基体以及纤维-CNT-基体组元区域的力学响应机制.结果表明,CNT生长点具有较高的结合强度,界面脱黏出现在纤维/热解碳界面处,原位生长的CNT显著强化了纤维-基体界面结合强度.PIP工艺对CNT造成损伤,致使CNT强化的微区基体的模量和硬度下降,而CNT的拔出、裂纹桥连等行为阻碍了微区基体的裂纹扩展,进而提高了微区基体的破坏容忍度.理论计算结果显示,由CNT带来的韧性贡献约为310.8J/m2.界面强化效应和微区基体裂纹扩展阻碍效应使纤维-CNT-基体组元的抗损伤能力得到了提高.利用微纳米测试连用手段可深入了解多级增强复合材料的纳米效应.此外,理论计算表明,CNT/基体的界面修饰及对CNT的有效保护会进一步提高CNT对微区基体的韧化效果.

References

[1]  7 Iwahori Y, Ishiwata S, Sumizawa T, et al. Mechanical properties improvements in two-phase and three-phase composites using carbon nanofiber dispersed resin. Compos Pt A Appl Sci Manuf, 2005, 36: 1430-1439
[2]  8 Sadeghian R, Gangireddy S, Minaie B, et al. Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Compos Pt A Appl Sci Manuf, 2006, 37: 1787-1795
[3]  9 Green K J, Dean D R, Vaidya U K, et al. Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Compos Part A Appl S, 2009, 40: 1470-1475
[4]  11 Taguchi T, Hasegawa Y, Shamoto S. Effect of carbon nanofiber dispersionon the properties of PIP-SiC/SiC composites. J Nucl Mater, 2011, 417: 348-352
[5]  12 Thostenson E T, Li W Z, Wang D Z, et al. Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys, 2002, 91: 6034-6037
[6]  13 Qian H, Greenhalgh E S, Shaffer M S P, et al. Carbon nanotube-based hierarchical composites: A review. J Mater Chem, 2010, 20: 4751-4762
[7]  14 Wood C D, Palmeri M J, Putz K W, et al. Nanoscale structure and local mechanical properties of fiber-reinforced composites containing MWCNT-grafted hybrid glass fibers. Compos Sci Technol, 2012, 72: 1705-1710
[8]  16 Qian H, Bismarck A, Greenhalgh E S, et al. Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation. Compos Part A Appl S, 2010, 41: 1107-1114
[9]  17 Ye F, Liu L, Wang Y, et al. Preparation and mechanical properties of carbon nanotube reinforced barium aluminosilicate glass-ceramic composites. Scr Mater, 2006, 55: 911-914
[10]  18 H J, Dong S, Zhang X, et al. Tailoring carbon fiber/carbon nanotubes interface to optimize mechanical properties of Cf-CNTs/SiC composite. Int J Ceram Technol, 2014, 11: 207-217
[11]  19 Hu J, Dong S, Wu B, et al. Mechanical and thermal properties of Cf/SiC composites reinforced with carbon nanotube grown in situ. Ceram Int, 2013, 39: 3387-3391
[12]  21 H J, Dong S, Zhang X, et al. Process and mechanical properties of carbon/carbon-silicon carbide composite reinforced with carbon nanotubes grown in situ. Compos Part A Appl S, 2013, 48: 73-81
[13]  22 Udayakumar A, Ganesh A S, Raja S, et al. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI. J Eur Ceram Soc, 2011, 31: 1145-1153
[14]  23 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic-modulus using l load and displacement sensing indentation experiments. J Mater Res, 1992, 7: 1564-1583
[15]  32 Mukhopadhyay A, Chu B T, Green M L H, et al. Understanding the mechanical reinforcement of uniformly dispersed mutiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Mater, 2010, 58: 2685-2697
[16]  33 Pan Z W, Xie S S, Lu L, et al. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl Phys Lett, 1999, 74: 3152-3154
[17]  1 Schmidt S, Beyer S, Knabe H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronaut, 2004, 55: 409-420
[18]  2 Krenkel W, Berndt F. C/C-SiC composites for space applications and advanced friction systerms. Mater Sci Eng A-Struct, 2005, 412: 177-181
[19]  3 Li Q, Dong S, Wang Z, et al. Fabrication and properties of 3-D Cf/SiC-ZrC composites, using ZrC precursor and polycarbosilane. J Am Ceram Soc, 2012, 95: 1216-1219
[20]  4 Yang W, Araki H, Kohyama A, et al. Process and mechanical properties of in situ silicon carbide-nanowire-reinforced chemical vapor infiltrated silicon carbide/silicon carbide composite. J Am Ceram Soc, 2004, 87: 1720-1725
[21]  5 Ruoff R S, Lorents D C. Mechanical and thermal-properties of carbon nanotubes. Carbon, 1995, 33: 925-930
[22]  6 Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382: 54-56
[23]  10 Wang H Z, Li X D, Ma J, et al. Fabrication of multi-walled carbon nanotube-reinforced carbon fiber/silicon carbide composites by polymer infiltration and pyrolysis process. Compos Sci Technol, 2012, 72: 461-466
[24]  15 Lü P, Feng Y, Zhang P, et al. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon, 2011, 49: 4665-4673
[25]  20 Zeng F G, Li X, Liu W H, et al. Improvement in the intense pulsed emission stability of grown CNT films via an electroless plated Ni layer. Chin Sci Bull, 2011, 56: 1392-1395
[26]  24 Ly H Q, Taylor R, Day R J. Conversion of polycarbosilane (PCS) to SiC-based ceramic part II. Pyrolysis and characterization. J Mater Sci, 2001, 36: 4045-4057
[27]  25 Jiang D, Zhang J, Lv Z. Multi-wall carbon nanotubes (MWCNTs)-SiC composites by laminated technology. J Eur Ceram Soc, 2012, 32: 1419-1425
[28]  26 Tan J, Meadows P J, Zhang D, et al. Young's modulus measurements of SiC coating on spherical particles by using nanoindentation. J Nucl Mater, 2009, 393: 22-29
[29]  27 Clark M D, Walker L S, Hadjiev V G, et al. Polymer precursor-based preparation of carbon nanotube-silicon carbide nanocomposites. J Am Ceram Soc, 2012, 95: 328-337
[30]  28 An L, Xu W, Rajagopalan S, et al. Carbon-nanotube-reinforced polymer-derived ceramic composites. Adv Marer, 2004,16: 2036-2040
[31]  29 Shimoda K, Hinoki T, Kohyama A. Effect of carbon nanofibers (CNFs) content on the thermal and mechanical properties of CNFs/SiC nanocomposites. Compos Sci Technol, 2010, 70: 387-392
[32]  30 Ahmad I, Unwin M, Cao H, et al. Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigation. Compos Sci Technol, 2010, 70: 1199-1206
[33]  31 Ding Y S. Preparation and properties of fiber reinforced silicon carbide matrix composites by pressure assisted technology(in Chinese). Doctor Dissertation. Beijing: Graduate School of Chinese Academy of Science, 2007. 112-113 [丁玉生. 纤维增强碳化硅基复合材料的压力辅助制备及性能研究. 博士学位论文. 北京: 中国科学院研究生院, 2007. 112-

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133