全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

硼化锆陶瓷生命周期中的化学反应

DOI: 10.1360/N972014-00466, PP. 276-286

Keywords: 硼化锆(ZrB2),超高温陶瓷(UHTCs),生命周期,粉体合成,反应烧结,氧化

Full-Text   Cite this paper   Add to My Lib

Abstract:

以硼化锆(ZrB2)为代表的硼化物陶瓷以其优异的综合性能成为超高温陶瓷(UHTCs)家族中的重要成员并引起了广泛的关注,有望作为热防护结构部件应用于高超声速飞行器的鼻锥和机翼前缘等关键部位.本文从物质循环的角度,提出了硼化锆陶瓷生命周期的概念,其主要包括硼化锆陶瓷的制备和应用2个过程.硼化锆陶瓷的制备过程通常可以分为粉体的合成制备和陶瓷的烧结致密化2个主要步骤.前者的固相法制备主要涉及从原料Zr4+(O2-)2到Zr2+(B-)2的还原反应,后者则涉及第二相除氧的局部化学反应过程.此外,制备过程还包括将上述2个步骤有机结合而实现一步完成的反应烧结过程.生命周期的应用过程则发生ZrB2向ZrO2转变的氧化过程.鉴于化学反应在硼化锆陶瓷的整个生命周期中的重要作用,本文对上述生命周期各过程中涉及的化学反应分别进行了阐述.

References

[1]  7 Sciti D, Guicciardi S, Bellosi A, et al. Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite. J Am Ceram Soc, 2006, 89: 2320-2322
[2]  8 Chamberlain A L, Fahrenholtz W G, Hilmas G E, et al. High-strength zirconium diboride-based ceramics. J Am Ceram Soc, 2004, 87: 1170-1172
[3]  12 Wu W W, Zhang G J, Kan Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800℃. J Am Ceram Soc, 2006, 89: 2967-2969
[4]  13 Zhao Y, Wang L J, Zhang G J, et al. Preparation and microstructure of a ZrB2-SiC composite fabricated by the spark plasma sintering- reactive synthesis (SPS-RS) method. J Am Ceram Soc, 2007, 90: 4040-4042
[5]  61 Sciti D, Brach M, Bellosi A. Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2-MoSi2 ceramic. Scr Mater, 2005, 53: 1297-1302
[6]  62 Sciti D, Brach M, Bellosi A. Oxidation behavior of a pressureless sintered ZrB2-MoSi2 ceramic composite. J Mater Res, 2005, 20: 922-930
[7]  16 Su K, Sneddon L G. A polymer precursor route to metal borides. Chem Mater, 1993, 5: 1659-1668
[8]  17 Schwab S T, Stewart C A, Dudeck K W, et al. Polymeric precursors to refractory metal borides. J Mater Sci, 2004, 39: 6051-6055
[9]  27 Ni D W, Zhang G J, Kan Y M, et al. Hot pressed HfB2 and HfB2-20 vol%SiC ceramics based on HfB2 powder synthesized by borothermal reduction of HfO2. Int J Appl Ceram Technol, 2010, 7: 830-836
[10]  28 Guo W M, Zhang G J. New borothermal reduction route to synthesize submicrometric ZrB2 powders with low oxygen content. J Am Ceram Soc, 2011, 94: 3702-3705
[11]  29 Baik S, Becher P F. Effect of oxygen contamination on densification of TiB2. J Am Ceram Soc, 1987, 70: 527-530
[12]  30 Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless densification of zirconium diboride with boron carbide additions. J Am Ceram Soc, 2006, 89: 1544-1550
[13]  31 Zou J, Sun S K, Zhang G J, et al. Chemical reactions, anisotropic grain growth and sintering mechanisms of self-reinforced ZrB2-SiC doped with WC. J Am Ceram Soc, 2011, 94: 1575-1583
[14]  37 Zhu S, Fahrenholtz W G, Hilmas G E, et al. Pressureless sintering of zirconium diboride using boron carbide and carbon additions. J Am Ceram Soc, 2007, 90: 3660-3663
[15]  38 Fahrenholtz W G, Hilmas G E, Zhang S C, et al. Pressureless sintering of zirconium diboride: Particle size and additive effects. J Am Ceram Soc, 2008, 91: 1398-1404
[16]  42 Zhang G J, Jin Z Z, Yue X M. Reaction synthesis of TiB2-SiC composites from TiH2-Si-B4C. Mater Lett, 1995, 25: 97-100
[17]  43 Zhang G J, Yue X M, Jin Z Z. Preparation and microstructure of TiB2-TiC-SiC platelet-reinforced ceramics by reactive hot-pressing. J Eur Ceram Soc, 1996, 16: 1145-1148
[18]  51 Wu W W, Zhang G J, Kan Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC composites at 1600℃. J Am Ceram Soc, 2008, 91: 2501-2508
[19]  52 Wu W W, Wang Z, Zhang G J, et al. ZrB2-MoSi2 composites toughened by elongated ZrB2 grains via reactive hot pressing. Scr Mater, 2009, 61: 316-319
[20]  53 Liu H T, Wu W W, Zou J, et al. In situ synthesis of ZrB2-MoSi2 platelet composites: Reactive hot pressing process, microstructure and mechanical properties. Ceram Int, 2012, 38: 4751-4760
[21]  55 Liu H T, Zou J, Ni D W, et al. Anisotropy oxidation of textured ZrB2-MoSi2 ceramics. J Eur Ceram Soc, 2012, 32: 3469-3476
[22]  59 Fahrenholtz W G. Thermodynamic analysis of ZrB2-SiC oxidation: Formation of a SiC-depleted region. J Am Ceram Soc, 2007, 90: 143-148
[23]  60 Guo W M, Zhang G J. Oxidation resistance and strength retention of ZrB2-SiC ceramics. J Eur Ceram Soc, 2010, 30: 2387-2395
[24]  1 Upadhya K, Yang J M, Hoffman W P. Materials for ultrahigh temperature structural applications. Am Ceram Soc Bull, 1997, 76: 51-56
[25]  2 Zhang G J, Deng Z Y, Kondo N, et al. Reactive hot pressing of ZrB2-SiC composites. J Am Ceram Soc, 2000, 83: 2330-2332
[26]  3 Monteverde F, Bellosi A, Guicciardi S. Processing and properties of zirconium diboride-based composites. J Eur Ceram Soc, 2002, 22: 279-288
[27]  4 Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium. J Am Ceram Soc, 2007, 90: 1347-1364
[28]  5 Zhang G J, Zou J, Ni D W, et al. Boride ceramics: Densification, microstructure tailoring and properties improvement. J Inorg Mater, 2012, 27: 225-233
[29]  6 Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless sintering of ZrB2-SiC ceramics. J Am Ceram Soc, 2008, 91: 26-32
[30]  9 Zou J, Zhang G J, Kan Y M, et al. Hot-pressed ZrB2-SiC ceramics with VC addition: Chemical reactions, microstructures, and mechanical properties. J Am Ceram Soc, 2009, 92: 2838-2846
[31]  10 Sciti D, Nygren M. Spark plasma sintering of ultra refractory compounds. J Mater Sci, 2008, 43: 6414-6421
[32]  11 Hu C F, Sakka Y, Tanaka H, et al. Microstructure and properties of ZrB2-SiC composites prepared by spark plasma sintering using TaSi2 as sintering additive. J Eur Ceram Soc, 2010, 30: 2625-2631
[33]  14 Ran S, Van der Biest O, Vleugels J. ZrB2-SiC composites prepared by reactive pulsed electric current sintering. J Eur Ceram Soc, 2010, 30: 2633-2642
[34]  15 Su K, Sneddon L G. Polymer-precursor routes to metal borides: Synthesis of titanium boride (TiB2) and zirconium boride (ZrB2). Chem Mater, 1991, 3: 10-12
[35]  18 Yan Y J, Huang Z R, Dong S M, et al. New route to synthesize ultra-fine zirconium diboride powders using inorganic-organic hybrid precursors. J Am Ceram Soc, 2006, 89: 3585-3588
[36]  19 Xie Y, Sanders T H, Speyer R F. Solution-based synthesis of submicrometer ZrB2 and ZrB2-TaB2. J Am Ceram Soc, 2008, 91: 1469-1474
[37]  20 Zhao H, He Y, Jin Z Z. Preparation of zirconium boride powder. J Am Ceram Soc, 1995, 78: 2534-2536
[38]  21 Karasev A I. Preparation of technical zirconium diboride by the carbothermic reduction of mixtures of zirconium and boron oxides. Powder Metall Met Ceram, 1973, 12: 926-929
[39]  22 Funke V F, Yudkovskii S I. Preparation of zirconium boride. Powder Metall Met Ceram, 1964, 2: 293-296
[40]  23 Kuzenkova M A, Kislyi P S. Preparation of zirconium diboride. Powder Metall Met Ceram, 1965, 4: 966-969
[41]  24 Guo W M, Zhang G J. Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum. J Am Ceram Soc, 2009, 92: 264-267
[42]  25 Peshev P, Bliznakov G. On the borothermic preparation of titanium, zirconium and hafnium diborides. J Less Common Metals, 1968, 14: 23-32
[43]  26 Ran S L, Van der Biest O, Vleugels J. ZrB2 powders synthesis by borothermal reduction. J Am Ceram Soc, 2010, 93: 1586-1590
[44]  32 Zou J, Zhang G J, Sun S K, et al. ZrO2 removing reactions of Groups IV-VI transition metal carbides in ZrB2 based composites. J Eur Ceram Soc, 2011, 31: 421-427
[45]  33 Zhu S M, Fahrenholtz W G, Hilmas G E, et al. Pressureless sintering of carbon-coated zirconium diboride powders. Mater Sci Eng A, 2007, 459: 167-171
[46]  34 Guo W M, Yang Z G, Zhang G J. Effect of carbon impurities on hot-pressed ZrB2-SiC ceramics. J Am Ceram Soc, 2011, 94: 3241-3244
[47]  35 Monteverde F. Hot pressing of hafnium diboride aided by different sinter additives. J Mater Sci, 2008, 43: 1002-1007
[48]  36 Zou J, Zhang G J, Kan Y M. Pressureless densification and mechanical properties of hafnium diboride doped with B4C: From solid state sintering to liquid phase sintering. J Eur Ceram Soc, 2010, 30: 2699-2705
[49]  39 Wang X G, Guo W M, Zhang G J. Pressureless sintering mechanism and microstructure of ZrB2-SiC ceramics doped with boron. Scr Mater, 2009, 61: 177-180
[50]  40 Guo W M, Zhang G J, Yang Z G. Pressureless sintering of zirconium diboride ceramics with boron additive. J Am Ceram Soc, 2012, 95: 2470-2473
[51]  41 Zhang G J, Jin Z Z, Yue X M. TiN-TiB2 composites prepared by reactive hot-pressing and effects of Ni addition. J Am Ceram Soc, 1995, 78: 2831-2833
[52]  44 Zhang G J, Yue X M, Jin Z Z, et al. In-situ synthesized TiB2 toughened SiC. J Eur Ceram Soc, 1996, 16: 409-412
[53]  45 Zhang G J, Jin Z Z, Yue X M. TiB2-Ti(C,N)-SiC composites prepared by reactive hot pressing. J Mater Sci Lett, 1996, 15: 26-28
[54]  46 Zhao Y, Wang L J, Zhang G J, et al. Effect of holding time and pressure on properties of ZrB2-SiC composite fabricated by the spark plasma sintering reactive synthesis method. Int J Refract Met H, 2009, 27: 177-180
[55]  47 Fahrenholtz W G. Reactive processing in ceramic-based systems. Int J Appl Ceram Technol, 2006, 3: 1-12
[56]  48 Chamberlain A L, Fahrenholtz W G, Hilmas G E. Reactive hot pressing of zirconium diboride. J Eur Ceram Soc, 2009, 29: 3401-3408
[57]  49 Zimmermann J W, Hilmas G E, Fahrenholtz W G, et al. Fabrication and properties of reactively hot pressed ZrB2-SiC ceramics. J Eur Ceram Soc, 2007, 27: 2729-2736
[58]  50 Chamberlain A L, Fahrenholtz W G, Hilmas G E. Low-temperature densification of zirconium diboride ceramics by reactive hot pressing. J Am Ceram Soc, 2006, 89: 3638-3645
[59]  54 Liu H T, Zou J, Ni D W, et al. Textured and platelet-reinforced ZrB2-based ultra-high-temperature ceramics. Scr Mater, 2011, 65: 37-40
[60]  56 Zhang H B, Zhang G J, Xue J X, et al. Preparation, texturing and mechanical properties of ZrB2-WSi2 ceramics via reactive hot pressing and hot forging. Adv Appl Ceram, 2014, 113: 389-393
[61]  57 Fahrenholtz W G. The ZrB2 volatility diagram. J Am Ceram Soc, 2005, 88: 3509-3512
[62]  58 Parthasarathy T A, Rapp R A, Opeka M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater, 2007, 55: 5999-6010
[63]  63 Monteverde F. The addition of SiC particles into a MoSi2-doped ZrB2 matrix: Effects on densification, microstructure and thermo-physical properties. Mater Chem Phys, 2009, 113: 626-633

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133