4 Guo S Q, Yang J M, Tanaka H, et al. Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles. Compos Sci Technol, 2008, 68: 3033-3040
[2]
5 Chamberlain A L, Fahrenholtz W G, Hilmas G E, et al. High-strength zirconium diboride-based ceramics. J Am Ceram Soc, 2004, 87: 1170-1172
[3]
8 Monteverde F, Bellosi A. Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride. Scr Mater, 2002, 46: 223-228
[4]
9 Monteverde F, Bellosi A. Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2. Adv Eng Mater, 2003, 5: 508-512
[5]
10 Yan Y J, Zhang H, Yin J, et al. Effect of Mo and B4C as sintering aids on the pressureless sintering and oxidation resistance of ZrB2-SiC composites (in Chinese). In: China Society of Space Research of Space Materials Professional Committee 2011 Symposium, 2011. 82-88 [闫永杰, 张辉, 殷杰, 等. 烧结助剂Mo和B4C对ZrB2-SiC超高温陶瓷常压烧结和抗氧化性能的影响. 见: 中国空间科学学会空间材料专业委员会2011学术交流会论文集, 2011. 82-
[6]
11 Monteverde F, Bellosi A, Guicciardi S. Processing and properties of zirconium diboride-based composites. J Eur Ceram Soc, 2002, 22: 279-288
[7]
12 Kislii P S, Kuzenkova M A, Zaverukha O V. Sintering process of zirconium diboride with tungsten. Phys Sinter, 1971, 3: 29-43
[8]
13 Kislyi P S, Kuzenkova M A. Regularities of sintering of zirconium diboride-molybenum alloys. Soviet Powder Metal Met Ceram, 1966, 5: 360-365
[9]
14 Cech B, Oliverius P, Seibal J. Sintering of zirconium boride with activating additions. Powder Metall, 1965, 8: 142-151
[10]
15 Guo S Q, Kagawa Y, Nishimura T. Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. J Eur Ceram Soc, 2009, 29: 787-794
[11]
16 Tokita M. Trends in advanced SPS spark plasma sintering system and technology. Soc Powder Technol, 1993, 30: 790-804
[12]
17 Munir Z. The effect of external fields on mass-transport and defect-related phenomena. J Mater Synth Process, 1993, 1: 3-16
[13]
18 Shen Z, Johnsson M, Zhao Z, et al. Spark plasma sintering of alumina. J Am Ceram Soc, 2002, 85: 1921-1927
[14]
19 Bellosi A, Monteverde F, Sciti D. Fast densification of ultra-high-temperature ceramics by spark plasma sintering. Int J Appl Ceram Technol, 2006, 3: 32-40
[15]
20 Medri V, Monteverde F, Balbo A, et al. Comparison of ZrB2-ZrC-SiC composites fabricated by spark plasma sintering and hot-pressing. Adv Eng Mater, 2005, 7: 159-163
[16]
21 Venkateswaran T, Basu B, Raju G B, et al. Densification and properties of transition metal borides-based cermets via spark plasma sintering. J Eur Ceram Soc, 2006, 26: 2431-2440
[17]
22 Mizuguchi T, Guo S, Kagawa Y. Transmission electron microscopy characterization of spark plasma sintered ZrB2 ceramic. Ceram Int, 2010, 36: 943-946
[18]
23 Guo S Q, Nishimura T, Kagawa Y, et al. Spark plasma sintering of zirconium diborides. J Am Ceram Soc, 2008, 91: 2848-2855
[19]
24 Pastor H. Metallic borides: Preparation of solid bodies-sintering methods and properties of solid bodies. In: Matkovich V I, ed. Boron and Refractory Borides. New York: Springer-Verlag, 1977. 457-493
[20]
25 Meléndez-Mart?nez J J, Dom?nguez-Rodr?guez A, Monteverde F, et al. Characterisation and high temperature mechanical properties of zirconium boride-based materials. J Eur Ceram Soc, 2002, 22: 2543-2549
[21]
26 Chown J. Hot Pressing of Zirconium Diboride. London: The British Ceramic Society Academic Press, 1968
[22]
27 Fenter J R. Refractory diborides as engineering materials. Sampe Quart, 1971, 2: 1-15
[23]
28 Meerson G A, Gorbunov A E. Activated sintering of zirconium boride. Inorg Mater, 1968, 4: 267-270
[24]
29 Nygren M, Shen Z. On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering. Solid State Sci, 2003, 5: 125-131
[25]
30 Wu W W, Zhang G J, Kan Y M, et al. Reactive synthesis of ZrB2-SiC based ultra-high temperature ceramics and powders (in Chinese). Rare Metal Mat Eng, 2007, 36: 20-23 [吴雯雯, 张国军, 阚艳梅, 等. ZrB2-SiC 基超高温陶瓷(UHTCs)的反应烧结及SHS粉体制备. 稀有金属材料与工程, 2007, 36: 20-
[26]
31 Chamberlain A L, Fahrenholtz W G, Hilmas G E. Low-temperature densification of zirconium diboride ceramics by reactive hot pressing. J Am Ceram Soc, 2006, 89: 3638-3645
[27]
32 Chiang Y M, Haggerty J S, Messner R P, et al. Reaction-based processing methods for ceramic-matrix composites. Am Ceram Soc Bull, 1989, 68: 420-428
[28]
33 Qu Q, Han J, Han W, et al. In situ synthesis mechanism and characterization of ZrB2-ZrC-SiC ultra high-temperature ceramics. Mater Chem Phys, 2008, 110: 216-221
[29]
34 Zhang X, Qu Q, Han J, et al. Microstructural features and mechanical properties of ZrB2-SiC-ZrC composites fabricated by hot pressing and reactive hot pressing. Scr Mater, 2008, 59: 753-756
[30]
35 Chamberlain A L, Fahrenholtz W G, Hilmas G E. Pressureless sintering of zirconium diboride. J Am Ceram Soc, 2006, 89: 450-456
[31]
36 Einarsrud M A, Hagen E, Pettersen G, et al. Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives. J Am Ceram Soc, 1997, 80: 3013-3020
[32]
37 Sciti D, Guicciardi S, Bellosi A, et al. Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite. J Am Ceram Soc, 2006, 89: 2320-2322
[33]
38 Zhu S, Fahrenholtz W G, Hilmas G E, et al. Pressureless sintering of zirconium diboride using boron carbide and carbon additions. J Am Ceram Soc, 2007, 90: 3660-3663
[34]
39 Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless densification of zirconium diboride with boron carbide additions. J Am Ceram Soc, 2006, 89: 1544-1550
[35]
40 Fahrenholtz W G, Hilmas G E, Zhang S C, et al. Pressureless sintering of zirconium diboride: Particle size and additive effects. J Am Ceram Soc, 2008, 91: 1398-1404
[36]
41 Monteverde F. Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering. J Alloys Compd, 2007, 428: 197-205
[37]
45 Rezaie A, Fahrenholtz W G, Hilmas G E. Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2-SiC. J Mater Sci, 2007, 42: 2735-2744
[38]
46 Zou J, Zhang G J, Hu C F, et al. Strong ZrB2-SiC-WC ceramics at 1600℃. J Am Ceram Soc, 2012, 95: 874-878
[39]
49 Zimmermann J W, Hilmas G E, Fahrenholtz W G. Thermal shock resistance of ZrB2 and ZrB2-30% SiC. Mater Chem Phys, 2008, 112: 140-145
[40]
50 Zimmermann J W, Hilmas G E, Fahrenholtz W G. Thermal shock resistance and fracture behavior of ZrB2-based fibrous monolith ceramics. J Am Ceram Soc, 2009, 92: 161-166
[41]
53 Hu P, Guolin W, Wang Z. Oxidation mechanism and resistance of ZrB2-SiC composites. Corrosion Sci, 2009, 51: 2724-2732
[42]
54 Zhang X H, Hu P, Han J C. Structure evolution of ZrB2-SiC during the oxidation in air. J Mater Res, 2008, 23: 1961-1972
[43]
59 Hu P, Gui K, Yang Y, et al. Effect of SiC content on the ablation and oxidation behavior of ZrB2-based ultra high temperature ceramic composites. Materials, 2013, 6: 1730-1744
[44]
60 Marschall J, Pejakovi? D A, Fahrenholtz W G, et al. Temperature jump phenomenon during plasmatron testing of ZrB2-SiC ultrahigh-temperature ceramics. J Thermophys Heat Transfer, 2012, 26: 559-572
[45]
1 Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium. J Am Ceram Soc, 2007, 90: 1347-1364
[46]
2 Guo S Q. Densification of ZrB2-based composites and their mechanical and physical properties: A review. J Eur Ceram Soc, 2009, 29: 995-1011
[47]
3 Kinoshita M, Kose S, Hamano Y. Hot-pressing of zirconium diboride-molybdenum disilicide mixtures. Osaka Kogyo Gijutsu Shikenjo Kiho, 1970, 21: 97-108
[48]
6 Dole S L, Prochazka S, Doremus R H. Microstructural coarsening during sintering of boron carbide. J Am Ceram Soc, 1989, 72: 958-966
[49]
7 Baik S, Becher P F. Effect of oxygen contamination on densification of TiB2. J Am Ceram Soc, 1987, 70: 527-530
[50]
42 Gasch M, Ellerby D, Irby E, et al. Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. J Mater Sci, 2004, 39: 5925-5937
[51]
43 Monteverde F, Bellosi A. Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates. Solid State Sci, 2005, 7: 622-630
[52]
44 Wang Z, Wang S, Zhang X, et al. Effect of graphite flake on microstructure as well as mechanical properties and thermal shock resistance of ZrB2-SiC matrix ultrahigh temperature ceramics. J Alloys Compd, 2009, 484: 390-394
[53]
47 Hu P, Wang Z. Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800℃. J Eur Ceram Soc, 2010, 30: 1021-1026
[54]
48 Wang Y, Liang J, Han W, et al. Mechanical properties and thermal shock behavior of hot-pressed ZrB2-SiC-AlN composites. J Alloys Compd, 2009, 475: 762-765
[55]
51 Wang Z, Hong C, Zhang X, et al. Microstructure and thermal shock behavior of ZrB2-SiC-graphite composite. Mater Chem Phys, 2009, 113: 338-341
[56]
52 Zhang X H, Hu P, Han J C, et al. Study on thermal shock resistance and oxidation resistance of ultra-high temperature ceramics (in Chinese). Mater China, 2011, 30: 27-31 [张幸红, 胡平, 韩杰才, 等. 超高温陶瓷复合材料抗热冲击性能及抗氧化性能研究. 中国材料进展, 2011, 30: 27-
[57]
55 Han W B, Hu P, Zhang X H, et al. High-temperature oxidation at 1900℃ of ZrB2-xSiC ultrahigh-temperature ceramic composites. J Am Ceram Soc, 2008, 91: 3328-3334
[58]
56 Hu P, Zhang X H, Han J C, et al. Effect of various additives on the oxidation behavior of ZrB2-based ultra-high-temperature ceramics at 1800℃. J Am Ceram Soc, 2010, 93: 345-349
[59]
57 Dehdashti M K, Fahrenholtz W G, Hilmas G E. Effects of temperature and the incorporation of W on the oxidation of ZrB2 ceramics. Corros Sci, 2014, 80: 221-228
[60]
58 Han J, Hu P, Zhang X, et al. Oxidation-resistant ZrB2-SiC composites at 2200℃. Compos Sci Technol, 2008, 68: 799-806