全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

超高温陶瓷复合材料的研究进展

DOI: 10.1360/N972014-00456, PP. 257-266

Keywords: 超高温陶瓷材料,ZrB2,HfB2,力学性能,抗热冲击,氧化,烧蚀

Full-Text   Cite this paper   Add to My Lib

Abstract:

超高温陶瓷复合材料主要由ZrB2,ZrC,HfB2,HfN,HfC,TaC等过渡族难熔硼化物、碳化物和氮化物组成,这些材料的熔点高于3000℃,是一类非常重要的高温结构材料,近年来在基础研究和技术应用方面均受到了极大的关注.在超高温陶瓷复合材料家族中,ZrB2-SiC和HfB2-SiC基超高温陶瓷复合材料因具有优异的综合性能,包括优异的抗氧化/烧蚀性能、良好的高温强度保持率和适中的抗热冲击性能,可以在2000℃以上的氧化环境中长时间使用.这些独特的性能使得它们成为高超音速飞行、再入大气层和火箭推进等极端环境下使用的最有前景的候选材料.本文对超高温陶瓷复合材料的制备、力学性能、抗热冲击性能、抗氧化/烧蚀性能和热响应进行了全面的综述.对超高温陶瓷复合材料组分、微结构和性能之间的关系进行了详细的讨论,同时添加剂对材料性能的影响也进行了讨论,这为超高温陶瓷复合材料在特定使用环境的综合性能的优化提供了有效的设计原则和方法.此外,本文还指出了超高温陶瓷复合材料目前存在的挑战,并对未来的发展趋势作了展望.

References

[1]  4 Guo S Q, Yang J M, Tanaka H, et al. Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles. Compos Sci Technol, 2008, 68: 3033-3040
[2]  5 Chamberlain A L, Fahrenholtz W G, Hilmas G E, et al. High-strength zirconium diboride-based ceramics. J Am Ceram Soc, 2004, 87: 1170-1172
[3]  8 Monteverde F, Bellosi A. Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride. Scr Mater, 2002, 46: 223-228
[4]  9 Monteverde F, Bellosi A. Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2. Adv Eng Mater, 2003, 5: 508-512
[5]  10 Yan Y J, Zhang H, Yin J, et al. Effect of Mo and B4C as sintering aids on the pressureless sintering and oxidation resistance of ZrB2-SiC composites (in Chinese). In: China Society of Space Research of Space Materials Professional Committee 2011 Symposium, 2011. 82-88 [闫永杰, 张辉, 殷杰, 等. 烧结助剂Mo和B4C对ZrB2-SiC超高温陶瓷常压烧结和抗氧化性能的影响. 见: 中国空间科学学会空间材料专业委员会2011学术交流会论文集, 2011. 82-
[6]  11 Monteverde F, Bellosi A, Guicciardi S. Processing and properties of zirconium diboride-based composites. J Eur Ceram Soc, 2002, 22: 279-288
[7]  12 Kislii P S, Kuzenkova M A, Zaverukha O V. Sintering process of zirconium diboride with tungsten. Phys Sinter, 1971, 3: 29-43
[8]  13 Kislyi P S, Kuzenkova M A. Regularities of sintering of zirconium diboride-molybenum alloys. Soviet Powder Metal Met Ceram, 1966, 5: 360-365
[9]  14 Cech B, Oliverius P, Seibal J. Sintering of zirconium boride with activating additions. Powder Metall, 1965, 8: 142-151
[10]  15 Guo S Q, Kagawa Y, Nishimura T. Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. J Eur Ceram Soc, 2009, 29: 787-794
[11]  16 Tokita M. Trends in advanced SPS spark plasma sintering system and technology. Soc Powder Technol, 1993, 30: 790-804
[12]  17 Munir Z. The effect of external fields on mass-transport and defect-related phenomena. J Mater Synth Process, 1993, 1: 3-16
[13]  18 Shen Z, Johnsson M, Zhao Z, et al. Spark plasma sintering of alumina. J Am Ceram Soc, 2002, 85: 1921-1927
[14]  19 Bellosi A, Monteverde F, Sciti D. Fast densification of ultra-high-temperature ceramics by spark plasma sintering. Int J Appl Ceram Technol, 2006, 3: 32-40
[15]  20 Medri V, Monteverde F, Balbo A, et al. Comparison of ZrB2-ZrC-SiC composites fabricated by spark plasma sintering and hot-pressing. Adv Eng Mater, 2005, 7: 159-163
[16]  21 Venkateswaran T, Basu B, Raju G B, et al. Densification and properties of transition metal borides-based cermets via spark plasma sintering. J Eur Ceram Soc, 2006, 26: 2431-2440
[17]  22 Mizuguchi T, Guo S, Kagawa Y. Transmission electron microscopy characterization of spark plasma sintered ZrB2 ceramic. Ceram Int, 2010, 36: 943-946
[18]  23 Guo S Q, Nishimura T, Kagawa Y, et al. Spark plasma sintering of zirconium diborides. J Am Ceram Soc, 2008, 91: 2848-2855
[19]  24 Pastor H. Metallic borides: Preparation of solid bodies-sintering methods and properties of solid bodies. In: Matkovich V I, ed. Boron and Refractory Borides. New York: Springer-Verlag, 1977. 457-493
[20]  25 Meléndez-Mart?nez J J, Dom?nguez-Rodr?guez A, Monteverde F, et al. Characterisation and high temperature mechanical properties of zirconium boride-based materials. J Eur Ceram Soc, 2002, 22: 2543-2549
[21]  26 Chown J. Hot Pressing of Zirconium Diboride. London: The British Ceramic Society Academic Press, 1968
[22]  27 Fenter J R. Refractory diborides as engineering materials. Sampe Quart, 1971, 2: 1-15
[23]  28 Meerson G A, Gorbunov A E. Activated sintering of zirconium boride. Inorg Mater, 1968, 4: 267-270
[24]  29 Nygren M, Shen Z. On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering. Solid State Sci, 2003, 5: 125-131
[25]  30 Wu W W, Zhang G J, Kan Y M, et al. Reactive synthesis of ZrB2-SiC based ultra-high temperature ceramics and powders (in Chinese). Rare Metal Mat Eng, 2007, 36: 20-23 [吴雯雯, 张国军, 阚艳梅, 等. ZrB2-SiC 基超高温陶瓷(UHTCs)的反应烧结及SHS粉体制备. 稀有金属材料与工程, 2007, 36: 20-
[26]  31 Chamberlain A L, Fahrenholtz W G, Hilmas G E. Low-temperature densification of zirconium diboride ceramics by reactive hot pressing. J Am Ceram Soc, 2006, 89: 3638-3645
[27]  32 Chiang Y M, Haggerty J S, Messner R P, et al. Reaction-based processing methods for ceramic-matrix composites. Am Ceram Soc Bull, 1989, 68: 420-428
[28]  33 Qu Q, Han J, Han W, et al. In situ synthesis mechanism and characterization of ZrB2-ZrC-SiC ultra high-temperature ceramics. Mater Chem Phys, 2008, 110: 216-221
[29]  34 Zhang X, Qu Q, Han J, et al. Microstructural features and mechanical properties of ZrB2-SiC-ZrC composites fabricated by hot pressing and reactive hot pressing. Scr Mater, 2008, 59: 753-756
[30]  35 Chamberlain A L, Fahrenholtz W G, Hilmas G E. Pressureless sintering of zirconium diboride. J Am Ceram Soc, 2006, 89: 450-456
[31]  36 Einarsrud M A, Hagen E, Pettersen G, et al. Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives. J Am Ceram Soc, 1997, 80: 3013-3020
[32]  37 Sciti D, Guicciardi S, Bellosi A, et al. Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite. J Am Ceram Soc, 2006, 89: 2320-2322
[33]  38 Zhu S, Fahrenholtz W G, Hilmas G E, et al. Pressureless sintering of zirconium diboride using boron carbide and carbon additions. J Am Ceram Soc, 2007, 90: 3660-3663
[34]  39 Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless densification of zirconium diboride with boron carbide additions. J Am Ceram Soc, 2006, 89: 1544-1550
[35]  40 Fahrenholtz W G, Hilmas G E, Zhang S C, et al. Pressureless sintering of zirconium diboride: Particle size and additive effects. J Am Ceram Soc, 2008, 91: 1398-1404
[36]  41 Monteverde F. Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering. J Alloys Compd, 2007, 428: 197-205
[37]  45 Rezaie A, Fahrenholtz W G, Hilmas G E. Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2-SiC. J Mater Sci, 2007, 42: 2735-2744
[38]  46 Zou J, Zhang G J, Hu C F, et al. Strong ZrB2-SiC-WC ceramics at 1600℃. J Am Ceram Soc, 2012, 95: 874-878
[39]  49 Zimmermann J W, Hilmas G E, Fahrenholtz W G. Thermal shock resistance of ZrB2 and ZrB2-30% SiC. Mater Chem Phys, 2008, 112: 140-145
[40]  50 Zimmermann J W, Hilmas G E, Fahrenholtz W G. Thermal shock resistance and fracture behavior of ZrB2-based fibrous monolith ceramics. J Am Ceram Soc, 2009, 92: 161-166
[41]  53 Hu P, Guolin W, Wang Z. Oxidation mechanism and resistance of ZrB2-SiC composites. Corrosion Sci, 2009, 51: 2724-2732
[42]  54 Zhang X H, Hu P, Han J C. Structure evolution of ZrB2-SiC during the oxidation in air. J Mater Res, 2008, 23: 1961-1972
[43]  59 Hu P, Gui K, Yang Y, et al. Effect of SiC content on the ablation and oxidation behavior of ZrB2-based ultra high temperature ceramic composites. Materials, 2013, 6: 1730-1744
[44]  60 Marschall J, Pejakovi? D A, Fahrenholtz W G, et al. Temperature jump phenomenon during plasmatron testing of ZrB2-SiC ultrahigh-temperature ceramics. J Thermophys Heat Transfer, 2012, 26: 559-572
[45]  1 Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium. J Am Ceram Soc, 2007, 90: 1347-1364
[46]  2 Guo S Q. Densification of ZrB2-based composites and their mechanical and physical properties: A review. J Eur Ceram Soc, 2009, 29: 995-1011
[47]  3 Kinoshita M, Kose S, Hamano Y. Hot-pressing of zirconium diboride-molybdenum disilicide mixtures. Osaka Kogyo Gijutsu Shikenjo Kiho, 1970, 21: 97-108
[48]  6 Dole S L, Prochazka S, Doremus R H. Microstructural coarsening during sintering of boron carbide. J Am Ceram Soc, 1989, 72: 958-966
[49]  7 Baik S, Becher P F. Effect of oxygen contamination on densification of TiB2. J Am Ceram Soc, 1987, 70: 527-530
[50]  42 Gasch M, Ellerby D, Irby E, et al. Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. J Mater Sci, 2004, 39: 5925-5937
[51]  43 Monteverde F, Bellosi A. Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates. Solid State Sci, 2005, 7: 622-630
[52]  44 Wang Z, Wang S, Zhang X, et al. Effect of graphite flake on microstructure as well as mechanical properties and thermal shock resistance of ZrB2-SiC matrix ultrahigh temperature ceramics. J Alloys Compd, 2009, 484: 390-394
[53]  47 Hu P, Wang Z. Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800℃. J Eur Ceram Soc, 2010, 30: 1021-1026
[54]  48 Wang Y, Liang J, Han W, et al. Mechanical properties and thermal shock behavior of hot-pressed ZrB2-SiC-AlN composites. J Alloys Compd, 2009, 475: 762-765
[55]  51 Wang Z, Hong C, Zhang X, et al. Microstructure and thermal shock behavior of ZrB2-SiC-graphite composite. Mater Chem Phys, 2009, 113: 338-341
[56]  52 Zhang X H, Hu P, Han J C, et al. Study on thermal shock resistance and oxidation resistance of ultra-high temperature ceramics (in Chinese). Mater China, 2011, 30: 27-31 [张幸红, 胡平, 韩杰才, 等. 超高温陶瓷复合材料抗热冲击性能及抗氧化性能研究. 中国材料进展, 2011, 30: 27-
[57]  55 Han W B, Hu P, Zhang X H, et al. High-temperature oxidation at 1900℃ of ZrB2-xSiC ultrahigh-temperature ceramic composites. J Am Ceram Soc, 2008, 91: 3328-3334
[58]  56 Hu P, Zhang X H, Han J C, et al. Effect of various additives on the oxidation behavior of ZrB2-based ultra-high-temperature ceramics at 1800℃. J Am Ceram Soc, 2010, 93: 345-349
[59]  57 Dehdashti M K, Fahrenholtz W G, Hilmas G E. Effects of temperature and the incorporation of W on the oxidation of ZrB2 ceramics. Corros Sci, 2014, 80: 221-228
[60]  58 Han J, Hu P, Zhang X, et al. Oxidation-resistant ZrB2-SiC composites at 2200℃. Compos Sci Technol, 2008, 68: 799-806

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133