26 Zhang P F. Hot pressing behavior and high-temperature properties of mechanically alloyed 2Si-B-3C-N ceramic (in Chinese). Doctor Dissertation. Harbin: Harbin Institute of Technology, 2013 [张鹏飞. 机械合金化2Si-B-3C-N陶瓷的热压烧结与晶化行为及高温性能. 博士学位论文. 哈尔滨: 哈尔滨工业大学,
[2]
27 Ye D. Microstructure and oxidation resistance of the mechanically alloyed Si-B-C-N-Al powders and ceramics (in Chinese). Doctor Dissertation. Harbin: Harbin Institute of Technology, 2012 [叶丹. Si-B-C-N-Al机械合金化粉末及陶瓷的组织结构与抗氧化性. 博士学位论文. 哈尔滨: 哈尔滨工业大学,
[3]
28 Yang Z H, Zhou Y, Jia D C, et al. Microstructures and properties of SiB0.5C1.5N0.5 ceramics consolidated by mechanical alloying and hot pressing. Mater Sci Eng A, 2008, 489: 187-192
[4]
29 Pan L J. The surface coating on Cf and the preparation and properties of Cf/SiBCN composite (in Chinese). Master Dissertation. Harbin: Harbin Institute of Technology, 2012 [潘丽君. Cf表面涂层及Cf/SiBCN复合材料制备与性能. 硕士学位论文. 哈尔滨: 哈尔滨工业大学,
[5]
30 Yang Z H. Microstructure and high-temperature properties of the Si-B-C-N MA-powders and ceramics (in Chinese). Doctor Dissertation. Harbin: Harbin Institute of Technology, 2008 [杨治华. Si-B-C-N机械合金化粉末及陶瓷的组织结构与高温性能. 博士学位论文. 哈尔滨: 哈尔滨工业大学,
[6]
31 Wiederhorn S M, Roberts D E, Chuang T J. Damage-enhanced creep in a siliconized silicon carbide: Phenomenology. J Am Ceram Soc, 1988, 71: 602-608
[7]
32 Carter C H, Davis R F, Bentley J. Kinetics and mechanisms of high-temperature creep in silicon carbide: II, chemically vapor deposited. J Am Ceram Soc, 1984, 67: 732-740
[8]
33 Kumar R, Phillipp F, Aldinger F. Oxidation induced effects on the creep properties of nano-crystalline porous Si-B-C-N ceramics. Mater Sci Eng A Struct Mater Prop Microstruct Process, 2007, 445-446: 251-258
[9]
34 Kumar N V R, Mager R, Cai Y, et al. High temperature deformation behavior of crystallized Si-B-C-N ceramics obtained from a boron modified poly(vinyl)silazane polymeric precursor. Scr Mater, 2004, 51: 65-69
[10]
35 Carter C H, Davis R F, Bentley J. Kinetics and mechanisms of high-temperature creep in silicon carbide: I, reaction-bonded. J Am Ceram Soc, 1984, 67: 409-417
[11]
36 Zhang Q C. High-temperature creep of structural ceramics (in Chinese). Bull Chin Ceram Soc, 1988, 21: 36-48 [张清纯. 结构陶瓷的高温蠕变. 硅酸盐通报, 1988, 21: 36-
[12]
37 Hong Y Z. High temperature oxidation behavior and mechanism of mechanical-alloyed (MA) SiBCN ceramic (in Chinese). Master Dissertation. Harbin: Harbin Institute of Technology, 2013 [洪于喆. MASiBCN陶瓷的高温氧化规律与机理. 硕士学位论文. 哈尔滨: 哈尔滨工业大学,
[13]
38 Cinibulk M K, Parthasarathy T A. Characterization of oxidized polymer-derived SiBCN fibers. J Am Ceram Soc, 2001, 84: 2197-2202
[14]
39 Wang J Y, Duan X M, Yang Z H, et al. Ablation mechanism and properties of SiCf/SiBCN ceramic composites under an oxyacetylene torch environment. Corrosion Sci, 2014, 82: 101-107
[15]
11 Christ M, Zimmermann A, Zern A, et al. High temperature deformation behavior of crystallized precursor-derived Si-B-C-N ceramics. J Mater Sci, 2001, 36: 5767-5772
[16]
12 Zhang P F, Jia D C, Yang Z H, et al. Microstructural features and properties of the nano-crystalline SiC/BN(C) composite ceramic prepared from the mechanically alloyed SiBCN powder. J Alloy Compd, 2012, 537: 346-356
[17]
13 Weinmann M, Schuhmacher J, Kummer H, et al. Processing and thermal behavior of novel Si-B-C-N ceramic precursors. Chem Mater, 2000, 12: 623-632
[18]
20 Ye D, Jia D C, Yang Z, et al. Microstructures and mechanical properties of SiBCNAl ceramics produced by mechanical alloying and subsequent hot pressing. J Zhejiang Univ Sci A, 2010, 11: 761-765
[19]
21 Jia D C, Zhang P F, Yang Z H, et al. Process of amorphous and nanostructured Si-B(Al)-C-N ceramics (in Chinese). Mater China, 2011, 30: 5-11 [贾德昌, 张鹏飞, 杨治华, 等. Si-B(Al)-C-N系非晶和纳米陶瓷材料研究进展. 中国材料进展, 2011, 30: 5-
[20]
22 Zhang P F, Jia D C, Yang Z H, et al. Progress of a novel non-oxide Si-B-C-N ceramic and its matrix composites. J Adv Ceram, 2012, 1: 157-178
[21]
23 Baldus P, Jansen M, Sporn D, et al. Ceramic fibers for matrix composites in high-temperature engine applications. Science, 1999, 285: 699-703
[22]
24 Seifert H J, Peng J Q, Golczewsk J, et al. Phase equilibria of precursor-derived Si-(B-)C-N ceramics. Appl Organomet Chem, 2001, 15: 794-808
[23]
1 Ainger F W, Herbert J M. The preparation of phosphorus-nitrogen compounds as non-porous solids. In: Popper P, ed. Special Ceramics. New York: Academic Press, 1960. 168-182
[24]
2 Chantrell P G, Popper P. Inorganic polymers for ceramics. In: Popper P, ed. Special Ceramics. New York: Academic Press, 1965. 67
[25]
3 Wolfgang V. Production of shaped articles of homogeneous mixtures of silicon carbide and nitride. US Patent, 3853567, 1973
[26]
4 Yajima S, Hayashi J, Omorj M, et al. Development of a silicon carbide fiber with high tensile strengh. Nature, 1976, 261: 683-685
[27]
5 Yajima S, Hasegawa Y, Okamure K, et al. Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor. Nature, 1978, 273: 525-527
[28]
6 Riedel R, Passing G, Sch?nfelder H, et al. Processing of dense silicon-based ceramics at low temperatures. Nature, 1992, 355: 714-717
[29]
7 Riedel R, Kleebe H J, Sch?nfelder H, et al. A covalent micro-nano-composite resistant to high-temperature oxidation. Nature, 1994, 374: 526-528
[30]
8 Funayama O, Nakahara H, Okoda M, et al. Conversion mechanism of polyborosilazane into silicon nitride-based ceramics. J Mater Sci, 1994, 30: 410-416
[31]
9 Riedel R, Kienzle A, Dressler W, et al. A silicoboron carbonitride ceramic stable to 2000℃. Nature, 1996, 382: 796-798
[32]
10 Yang Z H, Jia D C, Zhou Y. Amorphous and nanocrystalline SiBCN ceramic composite and its synthesis method (in Chinese). PRC Patent, 200510001492.7, 2005 [杨治华, 贾德昌, 周玉. 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备工艺方法. 中国专利, 200510001492.7,
[33]
14 Weinmann M, Kamphowe T W, Schuhmacher J, et al. Design of polymeric Si-B-C-N ceramic precursors for application in fiber-reinforced composite materials. Chem Mater, 2000, 12: 2112-2122
[34]
15 Wang Z C, Aldinger F, Riedel R. Novel silicon-boron-carbon-nitrogen materials thermally stable up to 2200℃. J Am Ceram Soc, 2001, 10: 2179-2183
[35]
16 Zhang P F, Jia D C, Yang Z H, et al. Physical and surface characteristics of the mechanically alloyed SiBCN powder. Ceram Int, 2012, 38: 6399-6404
[36]
17 Ye D, Jia D C, Yang Z H, et al. Microstructure and valence bonds of Si-B-C-N-Al powders synthesized by mechanical alloying. Process Eng, 2012, 27: 1299-1304
[37]
18 Hu C C. Microstructure and properties of the Si-B-C-N-Zr MA-powders and ceramics (in Chinese). Master Dissertation. Harbin: Harbin Institute of Technology, 2013 [胡成川. Si-B-C-N-Zr机械合金化粉末及陶瓷的组织结构与性能. 硕士学位论文. 哈尔滨: 哈尔滨工业大学,
[38]
19 Zhang P F, Jia D C, Yang Z H, et al. Crystallization and microstructural evolution process from the mechanically alloyed amorphous SiBCN powder to the hot-pressed nano SiC/BN(C) ceramic. J Mater Sci, 2012, 47: 7291-7304
[39]
25 Gerstel P, Müller A, Bill J, et al. Processing and high-temperature behavior of Si/B/C/N precursor-derived ceramics without "free carbon". Chem Mater, 2003, 15: 4980-4986