全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

无机法制备Si-B-C-N系非晶/纳米晶新型陶瓷及复合材料研究进展

DOI: 10.1360/N972014-00502, PP. 236-245

Keywords: Si-B-C-N系陶瓷,非晶/纳米晶,机械合金化,热压烧结,组织结构,力学性能,热物理学性能,高温性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

可以在高温氧化、剧烈热震、燃气流烧蚀等苛刻条件下服役的新型高温结构和多功能防热材料是现代航空航天技术发展的迫切需求之一.Si-B-C-N系非晶及纳米晶复相陶瓷组织结构独特,高温性能优异,在高温结构和多功能防热领域极具应用潜力.有机聚合物先驱体裂解法(有机法)在致密Si-B-C-N系块体陶瓷的制备方面受限,哈尔滨工业大学特种陶瓷研究所开创的机械合金化-热压法(无机法)工艺简单,制备材料组织结构均匀、性能优良,成为Si-B-C-N系致密块体陶瓷和耐高温构件的有效制备手段,弥补了有机法的不足,对于丰富和完善该材料的实验数据和理论研究具有重要意义.本文综述了无机法制备Si-B-C-N系陶瓷及复合材料在显微组织结构特征及演变规律、力学和热物理学性能、抗氧化性能、抗热震性能、耐烧蚀性能和相关机理分析等方面的新近成果,并展望了其发展趋势.

References

[1]  26 Zhang P F. Hot pressing behavior and high-temperature properties of mechanically alloyed 2Si-B-3C-N ceramic (in Chinese). Doctor Dissertation. Harbin: Harbin Institute of Technology, 2013 [张鹏飞. 机械合金化2Si-B-3C-N陶瓷的热压烧结与晶化行为及高温性能. 博士学位论文. 哈尔滨: 哈尔滨工业大学,
[2]  27 Ye D. Microstructure and oxidation resistance of the mechanically alloyed Si-B-C-N-Al powders and ceramics (in Chinese). Doctor Dissertation. Harbin: Harbin Institute of Technology, 2012 [叶丹. Si-B-C-N-Al机械合金化粉末及陶瓷的组织结构与抗氧化性. 博士学位论文. 哈尔滨: 哈尔滨工业大学,
[3]  28 Yang Z H, Zhou Y, Jia D C, et al. Microstructures and properties of SiB0.5C1.5N0.5 ceramics consolidated by mechanical alloying and hot pressing. Mater Sci Eng A, 2008, 489: 187-192
[4]  29 Pan L J. The surface coating on Cf and the preparation and properties of Cf/SiBCN composite (in Chinese). Master Dissertation. Harbin: Harbin Institute of Technology, 2012 [潘丽君. Cf表面涂层及Cf/SiBCN复合材料制备与性能. 硕士学位论文. 哈尔滨: 哈尔滨工业大学,
[5]  30 Yang Z H. Microstructure and high-temperature properties of the Si-B-C-N MA-powders and ceramics (in Chinese). Doctor Dissertation. Harbin: Harbin Institute of Technology, 2008 [杨治华. Si-B-C-N机械合金化粉末及陶瓷的组织结构与高温性能. 博士学位论文. 哈尔滨: 哈尔滨工业大学,
[6]  31 Wiederhorn S M, Roberts D E, Chuang T J. Damage-enhanced creep in a siliconized silicon carbide: Phenomenology. J Am Ceram Soc, 1988, 71: 602-608
[7]  32 Carter C H, Davis R F, Bentley J. Kinetics and mechanisms of high-temperature creep in silicon carbide: II, chemically vapor deposited. J Am Ceram Soc, 1984, 67: 732-740
[8]  33 Kumar R, Phillipp F, Aldinger F. Oxidation induced effects on the creep properties of nano-crystalline porous Si-B-C-N ceramics. Mater Sci Eng A Struct Mater Prop Microstruct Process, 2007, 445-446: 251-258
[9]  34 Kumar N V R, Mager R, Cai Y, et al. High temperature deformation behavior of crystallized Si-B-C-N ceramics obtained from a boron modified poly(vinyl)silazane polymeric precursor. Scr Mater, 2004, 51: 65-69
[10]  35 Carter C H, Davis R F, Bentley J. Kinetics and mechanisms of high-temperature creep in silicon carbide: I, reaction-bonded. J Am Ceram Soc, 1984, 67: 409-417
[11]  36 Zhang Q C. High-temperature creep of structural ceramics (in Chinese). Bull Chin Ceram Soc, 1988, 21: 36-48 [张清纯. 结构陶瓷的高温蠕变. 硅酸盐通报, 1988, 21: 36-
[12]  37 Hong Y Z. High temperature oxidation behavior and mechanism of mechanical-alloyed (MA) SiBCN ceramic (in Chinese). Master Dissertation. Harbin: Harbin Institute of Technology, 2013 [洪于喆. MASiBCN陶瓷的高温氧化规律与机理. 硕士学位论文. 哈尔滨: 哈尔滨工业大学,
[13]  38 Cinibulk M K, Parthasarathy T A. Characterization of oxidized polymer-derived SiBCN fibers. J Am Ceram Soc, 2001, 84: 2197-2202
[14]  39 Wang J Y, Duan X M, Yang Z H, et al. Ablation mechanism and properties of SiCf/SiBCN ceramic composites under an oxyacetylene torch environment. Corrosion Sci, 2014, 82: 101-107
[15]  11 Christ M, Zimmermann A, Zern A, et al. High temperature deformation behavior of crystallized precursor-derived Si-B-C-N ceramics. J Mater Sci, 2001, 36: 5767-5772
[16]  12 Zhang P F, Jia D C, Yang Z H, et al. Microstructural features and properties of the nano-crystalline SiC/BN(C) composite ceramic prepared from the mechanically alloyed SiBCN powder. J Alloy Compd, 2012, 537: 346-356
[17]  13 Weinmann M, Schuhmacher J, Kummer H, et al. Processing and thermal behavior of novel Si-B-C-N ceramic precursors. Chem Mater, 2000, 12: 623-632
[18]  20 Ye D, Jia D C, Yang Z, et al. Microstructures and mechanical properties of SiBCNAl ceramics produced by mechanical alloying and subsequent hot pressing. J Zhejiang Univ Sci A, 2010, 11: 761-765
[19]  21 Jia D C, Zhang P F, Yang Z H, et al. Process of amorphous and nanostructured Si-B(Al)-C-N ceramics (in Chinese). Mater China, 2011, 30: 5-11 [贾德昌, 张鹏飞, 杨治华, 等. Si-B(Al)-C-N系非晶和纳米陶瓷材料研究进展. 中国材料进展, 2011, 30: 5-
[20]  22 Zhang P F, Jia D C, Yang Z H, et al. Progress of a novel non-oxide Si-B-C-N ceramic and its matrix composites. J Adv Ceram, 2012, 1: 157-178
[21]  23 Baldus P, Jansen M, Sporn D, et al. Ceramic fibers for matrix composites in high-temperature engine applications. Science, 1999, 285: 699-703
[22]  24 Seifert H J, Peng J Q, Golczewsk J, et al. Phase equilibria of precursor-derived Si-(B-)C-N ceramics. Appl Organomet Chem, 2001, 15: 794-808
[23]  1 Ainger F W, Herbert J M. The preparation of phosphorus-nitrogen compounds as non-porous solids. In: Popper P, ed. Special Ceramics. New York: Academic Press, 1960. 168-182
[24]  2 Chantrell P G, Popper P. Inorganic polymers for ceramics. In: Popper P, ed. Special Ceramics. New York: Academic Press, 1965. 67
[25]  3 Wolfgang V. Production of shaped articles of homogeneous mixtures of silicon carbide and nitride. US Patent, 3853567, 1973
[26]  4 Yajima S, Hayashi J, Omorj M, et al. Development of a silicon carbide fiber with high tensile strengh. Nature, 1976, 261: 683-685
[27]  5 Yajima S, Hasegawa Y, Okamure K, et al. Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor. Nature, 1978, 273: 525-527
[28]  6 Riedel R, Passing G, Sch?nfelder H, et al. Processing of dense silicon-based ceramics at low temperatures. Nature, 1992, 355: 714-717
[29]  7 Riedel R, Kleebe H J, Sch?nfelder H, et al. A covalent micro-nano-composite resistant to high-temperature oxidation. Nature, 1994, 374: 526-528
[30]  8 Funayama O, Nakahara H, Okoda M, et al. Conversion mechanism of polyborosilazane into silicon nitride-based ceramics. J Mater Sci, 1994, 30: 410-416
[31]  9 Riedel R, Kienzle A, Dressler W, et al. A silicoboron carbonitride ceramic stable to 2000℃. Nature, 1996, 382: 796-798
[32]  10 Yang Z H, Jia D C, Zhou Y. Amorphous and nanocrystalline SiBCN ceramic composite and its synthesis method (in Chinese). PRC Patent, 200510001492.7, 2005 [杨治华, 贾德昌, 周玉. 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备工艺方法. 中国专利, 200510001492.7,
[33]  14 Weinmann M, Kamphowe T W, Schuhmacher J, et al. Design of polymeric Si-B-C-N ceramic precursors for application in fiber-reinforced composite materials. Chem Mater, 2000, 12: 2112-2122
[34]  15 Wang Z C, Aldinger F, Riedel R. Novel silicon-boron-carbon-nitrogen materials thermally stable up to 2200℃. J Am Ceram Soc, 2001, 10: 2179-2183
[35]  16 Zhang P F, Jia D C, Yang Z H, et al. Physical and surface characteristics of the mechanically alloyed SiBCN powder. Ceram Int, 2012, 38: 6399-6404
[36]  17 Ye D, Jia D C, Yang Z H, et al. Microstructure and valence bonds of Si-B-C-N-Al powders synthesized by mechanical alloying. Process Eng, 2012, 27: 1299-1304
[37]  18 Hu C C. Microstructure and properties of the Si-B-C-N-Zr MA-powders and ceramics (in Chinese). Master Dissertation. Harbin: Harbin Institute of Technology, 2013 [胡成川. Si-B-C-N-Zr机械合金化粉末及陶瓷的组织结构与性能. 硕士学位论文. 哈尔滨: 哈尔滨工业大学,
[38]  19 Zhang P F, Jia D C, Yang Z H, et al. Crystallization and microstructural evolution process from the mechanically alloyed amorphous SiBCN powder to the hot-pressed nano SiC/BN(C) ceramic. J Mater Sci, 2012, 47: 7291-7304
[39]  25 Gerstel P, Müller A, Bill J, et al. Processing and high-temperature behavior of Si/B/C/N precursor-derived ceramics without "free carbon". Chem Mater, 2003, 15: 4980-4986

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133