3 Yoshikawa A, Hasegawa K, Lee J H, et al. Phase identification of Al2O3/RE3Al5O12 and Al2O3/REAlO3 (RE=Sm-Lu, Y) eutectics. J Cryst Growth, 2009, 218: 67-73
[2]
4 Orera V M, Pe?a J I, Oliete P B, et al. Growth of eutectic ceramic structures by directional solidification methods. J Cryst Growth, 2012, 360: 99-104
[3]
6 Mizutani Y, Yasuda H, Ohnaka I, et al. Coupled growth of unidirectionally solidified Al2O3-YAG eutectic ceramics. J Cryst Growth, 2002, 244: 384-392
[4]
7 Waku Y, Nakagawa N, Wakamoto T, et al. The creep and thermal stability characteristics of a unidirectionally solidified Al2O3/YAG eutectic composite. J Mater Sci, 1998, 33: 4943-4951
[5]
8 Waku Y, Nakagawa N, Wakamoto T, et al. A ductile ceramic eutectic composite with high strength at 1873 K. Nature, 1997, 389: 49-52
[6]
9 Su H J, Zhang J, Liu L, et al. Directionally solidited Al2O3/Y3Al5O12 (YAG) eutectic ceramics in-situ composites by laser remelting (in Chinese). Mater Sci Technol, 2007, 15: 741-745 [苏海军, 张军, 刘林, 等. 激光区熔定向凝固Al2O3/Y3Al5O12(YAG)共晶的组织与断裂韧性. 材料科学与工艺, 2007, 15: 741-
[7]
10 Su H J, Zhang J, Ma W, et al. In situ fabrication of highly-dense Al2O3/YAG nanoeutectic composite ceramics by a modified laser surface processing. J Eur Ceram Soc, 2014, 34: 739-744
[8]
11 Su H J, Zhang J, Ren Q, et al. Laser zone remelting of Al2O3/Er3Al5O12 bulk oxide in situ composite thermal emission ceramics: Influence of rapid solidification. Mater Res Bull, 2013, 48: 544-550
[9]
12 Fu X, Chen G, Zu Y, et al. Microstructure refinement of melt-grown Al2O3/YAG/ZrO2 eutectic composite by a new method: Melt superheating treatment. Scr Mater, 2013, 68: 731-734
[10]
13 Zhao Z, Zhang L, Song Y, et al. Al2O3-ZrO2 (Y2O3) eutectic ceramics preparing by self-pressing assisting combustion synthesis under high gravity. Rare Metal Mat Eng, 2011, 40: 203-206
[11]
14 Liu G, Wang Q, Li J. Preparation of Al2O3-ZrO2-SiO2 ceramic composites by high-gravity combustion synthesis. Int J Refract Met Hard Mat, 2013, 41: 622-626
[12]
15 Meng F C, Fu Z Y, Zhang J Y, et al. Rapid densification of nano-grained alumina by high temperature and pressure with a very high heating rate. J Am Ceram Soc, 2007, 90: 1262-1264
[13]
16 Fu Z Y, Huang L, Zhang J, et al. Ultra-fast densification of CNTs reinforced alumina based on combustion reaction and quick pressing. Sci China Tech Sci, 2012, 55: 484-489
[14]
17 Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc, 1981, 64: 533-538
[15]
18 Chantikul P, Anstis G R, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method. J Am Ceram Soc, 1981, 64: 539-543
[16]
19 Jackson K A, Hunt J D. Binary eutectic solidification. Trans Am Inst Min Metall Pet Eng, 1966, 236: 843-852
[17]
20 Chernov A. Stability of faceted shapes. J Cryst Growth, 1974, 24: 11-31
[18]
21 Waku Y, Nakagawa N, Ohtsubo H, et al. Fracture and deformation behaviour of melt growth composites at very high temperatures. J Mater Sci, 2001, 36: 1585-1594
[19]
22 Yang J M, Jeng S M, Chang S. Fracture behavior of directionally solidified Y3Al5O12/Al2O3 eutectic fiber. J Am Ceram Soc, 1996, 79: 1218-1222
[20]
1 Waku Y. A new ceramic eutectic composite with high strength at 1873 K. Adv Mater, 1998, 10: 615-617
[21]
2 Su H J, Zhang J, Deng Y F, et al. A modified preparation technique and characterization of directionally solidified Al2O3/Y3Al5O12 eutectic in situ composites. Scr Mater, 2009, 60: 362-365
[22]
5 Waku Y, Nakagawa N, Ohtsubo H, et al. High temperature properties of unidirectionally solidified Al2O3/YAG composites. J Jpn Inst Met, 1995, 59: 71-78
[23]
23 Minford W J, Bradt R C, Stubican V S. Crystallography and microstructure of directionally solidified oxide eutectics. J Am Ceram Soc, 1979, 62: 154-157