全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

结构陶瓷特殊条件下力学性能评价的新技术与技巧

DOI: 10.1360/N972014-00449, PP. 246-256

Keywords: 结构陶瓷,界面强度,陶瓷涂层,超高温极端环境,评价技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

结构陶瓷大多应用于一些普通材料无法正常使用的特殊环境,在这些环境下常规的测试方法和测试仪器难以准确获得其力学性能参数.本文论述了结构陶瓷在典型应用条件下力学性能评价的一些难点问题和新的研究进展,如界面和表面性能评价、超高温极端环境下材料力学性能评价、陶瓷管材和环状脆性材料的力学性能检测、陶瓷涂层力学性能等.介绍了这些特殊条件下的结构陶瓷关键力学性能的测试新技术与技巧,如十字交叉法、局部受热同步加载法、缺口环法、相对法和痕迹法等多种新评价技术.以Ti3SiC2-Al2O3十字交叉样品、SiC/C复合材料、ZrO2光纤套管、SiC涂层和玻璃为实验对象,测试结果表明这几种新技术操作简单、准确可靠.

References

[1]  18 The International Organization for Standardization. ISO 13124: Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for interfacial bonding strength of ceramic materials, 2011
[2]  19 The International Organization for Standardization. ISO 17095: Fine ceramics (advanced ceramics, advanced technical ceramics) —Test method for interfacial bonding strength of ceramic materials at elevated temperatures, 2013
[3]  20 Wan D T, Tian L, Bao Y W. Evaluation of the interfacial mechanical properties between the PVB layer and glass for laminated glass by cross-bonded methods (in Chinese). In: Zhang B H, Hao X G, eds. China Glass Industrial Annual Meeting and Technical Seminar 2009. Beijing: Beijing Science and Technology Publishing, 2009. 224-229 [万德田, 田莉, 包亦望. 十字交叉法评价夹层玻璃中PVB胶与玻璃的界面力学性能. 见: 张佰恒, 郝向国, 主编. 2009年中国玻璃行业年会暨技术研讨会论文集. 北京: 北京科学技术出版社, 2009. 224-
[4]  21 Wan D T, Bao Y W, Tian L, et al. Effect of the thickness of PVB layer and humidity aging time on the interfacial mechanical properties between the PVB layer and glass for laminated glass (in Chinese). Doors Windows, 2010, 38: 14-17 [万德田, 包亦望, 田莉, 等. 胶层厚度和耐湿老化对夹层玻璃中PVB胶与玻璃界面黏结性能的影响. 门窗, 2010, 38: 14-
[5]  22 Li K M, Bao Y W, Wan D T, et al. Interfacial bonding strength of diamond-like carbon coating using indentation and cross-bonded methods (in Chinese). J Chin Ceram Soc, 2010, 38: 119-125 [李坤明, 包亦望, 万德田, 等. 压痕法和十字交叉法评价类金刚石硬质涂层的界面结合强度. 硅酸盐学报, 2010, 38: 119-
[6]  23 Wan D T, Bao Y W, Liu X G, et al. Effect of humidity and radiation aging time on the interfacial bonding strength and residual wind pressure strength for laminated glass (in Chinese). China Build Mater Sci Technol, 2010, 6: 66-72 [万德田, 包亦望, 刘小根, 等. 耐湿和耐辐照老化对夹层玻璃界面黏结性能及抗风压强度的影响. 中国建材科技, 2010, 6: 66-
[7]  26 Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium. J Am Ceram Soc, 2007, 90: 1347-1364
[8]  27 Opeka M M, Talmy I G, Zaykoski J A. Oxidation-based materials selection for 2000℃+ hypersonic aerosurfaces: Theoretical considerations and historical experience. J Mater Sci, 2004, 39: 5887-5904
[9]  28 Naslain R, Christin F. SiC-matrix composite materials for advanced jet engines. MRS Bull, 2003, 28: 654-658
[10]  29 Monteverde F, Bellosi A. The resistance to oxidation of an HfB2-SiC composite. J Eur Ceram Soc, 2005, 25: 1025-1031
[11]  30 Bargeron C B, Benson R C, Jette A N, et al. Oxidation of hafnium carbide in the temperature range 1400 to 2060℃. J Am Ceram Soc, 1993, 76: 1040-1046
[12]  40 Wu B H, Liu C L, Zhao T, et al. Research on mechanical properties test of C/C Composites at ultra-high temperature (in Chinese). Aerosp Mater Technol, 2001, 6: 67-71 [武保华, 刘春立, 张涛, 等. 碳/碳复合材料超高温力学性能测试研究. 宇航材料工艺, 2001, 6: 67-
[13]  41 Yi F J, Han J C, Du S Y. Experimental investigation on mechanical properties of hybrid carbon-carbon composites at ultra-high temperature (in Chinese). Acta Mater Compos Sin, 2003, 20: 118-122 [易法军, 韩杰才, 杜善义. 混杂碳/碳复合材料超高温力学性能实验研究. 复合材料学报, 2003, 20: 118-
[14]  42 Du S Y, Han J C, He X D. Mechanical behavior of multi-dimensional carbon/carbon composites (in Chinese). J Astronauti, 1995, 16: 69-76 [韩杰才, 赫晓东, 杜善义. 多维编织C/C复合材料的强度与断裂. 宇航学报, 1995, 16: 69-
[15]  43 Zhang L T, Cheng L F, Xu Y D. Progress in research work of new CMC-SiC (in Chinese). Aeronaut Manuf Technol, 2003, (1): 24-32 [张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展. 航空制造技术, 2003, (1): 24-
[16]  44 Nie J J, Xu Y D, Zhang L T, et al. Ablation properties of three dimensional needled C/SiC composites by the chemical vapor infiltration (in Chinese). J Chin Ceram Soc, 2006, 34: 1238-1242 [聂景江, 徐永东, 张立同, 等. 化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能. 硅酸盐学报, 2006, 34: 1238-
[17]  45 Qiao S R, Luo G Q, Du S M, et al. Tensile performance of 3D-C/SiC composites at high temperature (in Chinese). Mech Sci Technol, 2004, 23: 335-338 [乔生儒, 罗国清, 杜双明, 等. 3D-C/SiC复合材料的高温拉伸性能. 机械科学与技术, 2004, 23: 335-
[18]  46 Du S M, Qiao S R, Ji G C, et al. Tension-tension fatigue behavior of 3D-C/SiC composite at room temperature and 1300℃ (in Chinese). J Mater Eng, 2002, 9: 22-25 [杜双明, 乔生儒, 纪岗昌, 等. 3D-C/SiC复合材料在室温和1300℃的拉-拉疲劳行为. 材料工程, 2002, 9: 22-
[19]  1 Kraft W. Joining of Ceramics, Glass and Metal. Oberursal: DGM, 1989. 3-29
[20]  35 Tului M, Lionetti S, Pulci G, et al. Effects of heat treatments on oxidation resistance and mechanical properties of ultra high temperature ceramic coatings. Surf Coat Technol, 2008, 202: 4394-4398
[21]  36 Pavese M, Fino P, Ortona C, et al. HfB2/SiC as a protective coating for 2D Cf/SiC composites: Effect of high temperature oxidation on mechanical properties. Surf Coat Technol, 2008, 202: 2059-2067
[22]  37 Wei X, Cheng L F, Zhang L T, et al. Numerical simulation of isothermal chemical vapor infiltration progress for fabrication of C/SiC composites (in Chinese). J Inorg Mater, 2006, 21: 1179-1184 [魏玺, 成来飞, 张立同, 等. C/SiC复合材料等温化学气相浸渗过程的数值模拟研究. 无机材料学报, 2006, 21: 1179-
[23]  38 Fujii K, Yasuda E, Tauabe Y. Dynamic mechanical properties of polycrystalline graphite and 2D C/C composite by plate impact. Int J Impact Eng, 2001, 25: 473-491
[24]  39 Gupta J S, Alix O, Boucard P A, et al. Fracture predications of a 3D C/C materials under impact. Compos Sci Technol, 2005, 65: 375-386
[25]  47 Bao Y W, Wan D T, Qiu Y, et al. Local heating together by loading method and device to test the mechanical properties of material at ultra-high temperature oxidation environment (in Chinese). PRC Patent, ZL201010244891.7, 2012-06-20 [包亦望, 万德田, 邱岩, 等. 局部受热加载测试材料在超高温氧化环境下力学性能的检测方法及装置. 中国专利, ZL201010244891.7, 2012-06-
[26]  48 Wan D T, Bao Y W, Tian Y, et al. Evaluation of impact bending strength of ceramic composites at ultra-high temperatures from 1500~2000℃ in air. Key Eng Mater, 2014, 591: 145-149
[27]  49 Munz D, Fett T. Mechanisches Verhalten Keramischer Werkstoffe. Berlin: Springer-Verlag, 1989. 75-81
[28]  50 Kuzmenko V A, Shevehuk A D, Borovik V G. Using C-shaped specimens for examining fatigue of ceramics. Strength Mater, 1985, 16: 607-611
[29]  2 Peteves S D. Designing Interface for Technological Applications: Ceramic-Ceramic Ceramic Metal Joining. London: Elsevier, 1989. 127-165
[30]  3 Askeland D R, Phule P P. The Science and Engineering of Materials. 4th ed. Singapore: Thomson Learning Asia Pte Ltd, 2005. 625-669
[31]  4 Nicholas M G, Mortimer D A. Ceramic/metal joining for structural applications. Mater Sci Technol, 1985, 1: 657-665
[32]  5 Rebillat F, Lamon J, Naslain R, et al. Properties of multilayered interphases in SiC/SiC chemical-vapor-infiltrated composites with weak and strong interfaces. J Am Ceram Soc, 1998, 81: 2315-2326
[33]  6 Sainz M A, Miranzo P, Osendi M I. Silicon nitride joining using silica and yttrium ceramic interlayers. J Am Ceram Soc, 2002, 85: 941-946
[34]  7 Pask J A. From technology to the science of glass/metal and ceramic/metal sealing. Am Ceram Soc Bull, 1987, 66: 1587-1592
[35]  8 Bao C G, Wang E Z, Gao Y M, et al. Effect of interface strength of Al2O3/steel on wear-resistance of composites at high temperatures (in Chinese). J Xi'an Jiao Tong Univ, 2000, 34: 41-45 [鲍崇高, 王恩泽, 高义民, 等. 界面结合强度对Al2O3/钢基复合材料高温抗磨性的影响. 西安交通大学学报, 2000, 34: 41-
[36]  9 Nair S V, Eaton H E, Sun E Y. Measurement of interface strength and toughness in shear of environmental barrier coating on ceramic substrates at ambient and at elevated temperature. Surf Coat Technol, 2006, 200: 5175-5180
[37]  10 Koyanagi J, Yoneyama S, Nemoto A, et al. Time and temperature dependence of carbon/epoxy interface strength. Compos Sci Technol, 2010, 70: 1395-1400
[38]  11 Hata S, Yamauchi R, Sakurai J, et al. Behavior of joining interface between thin film metallic glass and silicon nitride at heating. Mater Sci Eng B Adv Funct Solid State Mater, 2008, 148: 149-153
[39]  12 Hatta H, Goto K, Aoki T. Strengths of C/C composites under tensile, shear, and compressive loading: Role of interfacial shear strength. Compos Sci Technol, 2005, 65: 2550-2562
[40]  13 The International Organization for Standardization. ISO9693: Dental ceramic fused to metal restorative materials, 2005
[41]  14 Morrell R. Mechanical test methods for ceramic matrix composites. Br Ceram Trans, 1995, 94: 1-15
[42]  15 Bao Y W, Zhang H B, Zhou Y C. A simple method for measuring tensile and shear bond strength for ceramic-ceramic and metal-ceramic joining. Mater Res Innov, 2002, 6: 277-280
[43]  16 Bao Y W, Zhou Y C. A testing method for measuring the bonding strength of solid materials (in Chinese). PRC Patent, ZL02158874.0, 2006-09-27 [包亦望, 周延春. 一种测试固体材料的黏结强度的方法. 中国专利, ZL02158874.0, 2006-09-
[44]  17 Wan D T, Bao Y W, Liu X G, et al. Evaluation of high temperature interfacial bonding strength of Ti3SiC2-Al2O3 joint in air. Key Eng Mater, 2013, 544: 321-325
[45]  24 Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines. MRS Bull, 2003, 28: 622-630
[46]  25 Besmann T M. Chemical vapor deposition in the boron-carbon-nitrogen system. J Am Ceram Soc, 1990, 73: 2498-2501
[47]  31 Monteverde F, Bellosi A. Effect of the addition of silicon nitride on sintering behavior and microstructure of zirconium diboride. Scr Mater, 2002, 46: 223-228
[48]  32 Zhang G J, Ando M, Yang J F, et al. Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composite. J Eur Ceram Soc, 2004, 24: 171-178
[49]  33 He L F, Zhang H B, Xu J J, et al. Ultrahigh-temperature oxidation of Zr2Al3C4 via rapid induction heating. Scr Mater, 2009, 60: 547-550
[50]  34 Viricelle J P, Goursat P, Bahloul-Hourlier D. Oxidation behaviors of a multi-layered ceramic-matrix composite (SiC)f/C/(SiBC)m. Compos Sci Technol, 2001, 61: 607-614
[51]  51 Tandon R, Wereszczak A, Lara-Curzio E. Mechanical Properties and Performance of Engineering Ceramics and Composites II. New Jersey: Wiley, 2007. 281-294
[52]  52 Bao Y W, Wan D T. Evaluating the elastic modulus and strength of ring or tube brittle materials (in Chinese). PRC Patent, ZL201010544550.1, 2013-02-20 [包亦望, 万德田. 一种评价圆环或圆管状脆性材料弹性模量和强度的方法. 中国专利, ZL201010544550.1, 2013-02-
[53]  53 Wan D T, Bao Y W, Liu X G, et al. Evaluation of elastic modulus and strength of glass and ceramics by compressing a notched ring specimen. Adv Mater Res, 2011, 177: 114-117
[54]  54 The International Organization for Standardization. ISO/TC206 FDIS 18558: Fine ceramics (advanced ceramics, advanced technical ceramics) —Test method for determining elastic modulus and bending strength of ceramic tube and rings, 2014
[55]  55 Bao Y W, Zhou Y C, Bu X X, et al. Evaluating elastic modulus and strength of hard coatings by relative method. Mater Sci Eng A, 2007, 458: 268-274
[56]  56 Li K M, Bao Y W, Wan D T, et al. Evaluating absolute hardness of ceramic coatings using relative method. Key Eng Mater, 2010, 434-435: 530
[57]  57 Bao Y W, Zhou Y C. Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics. Mater Lett, 2003, 57: 4018-4022
[58]  58 Drexler J M, Ortiz A L, Padture N P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass. Acta Mater, 2012, 60: 5437-5447
[59]  59 Espallargas N, Berget J, Guilemany J M, et al. Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance. Surf Coat Technol, 2008, 202: 1405-1417
[60]  60 Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res, 2004, 19: 3-20
[61]  61 Suresh S, Giannakopoulos A E. A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater, 1998, 46: 5755-5767
[62]  62 The International Organization for Standardization. ISO/TC206 AWI 19603: Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for determining elastic modulus of thick ceramic coating at elevated temperatures, 2014
[63]  63 Bao Y W, Wang W, Zhou Y C. Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements. Acta Mater, 2004, 52: 5397-5404
[64]  64 Bao Y W, Liu L Z, Zhou Y C. Assessing the elastic parameters and energy-dissipation capacity of solid materials: A residual indent may tell all. Acta Mater, 2005, 53: 4857-4862
[65]  65 Bao Y W, Su S B, Yang J J, et al. Nondestructively determining local strength and residual stress of glass by Hertzian indentation. Acta Mater, 2002, 50: 4659-4666
[66]  66 Bao Y W, Qiu Y, Yan J J. An non-destructive online detecting device for glass (in Chinese). PRC Patent, ZL200510056997.3, 2007-05-16 [包亦望, 邱岩, 杨建军. 一种玻璃无损在线检测装置. 中国专利, ZL200510056997.3, 2007-05-

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133