16 Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunnelling microscope. Nature, 1990, 344: 524
[2]
17 Crommie M F, Lutz C P, Eigler D M. Confinement of electrons to quantum corrals on a metal surface. Science, 1993, 262: 218
[3]
18 Manoharan H C, Lutz C P, Eigler D M. Quantum mirages formed by coherent projection of electronic structure. Nature, 2000, 403: 512-515
[4]
19 Braun K F, Rieder K H. Engineering electronic lifetimes in artificial atomic structures. Phys Rev Lett, 2002, 88: 096801
[5]
20 Nilius N, Wallis T M, Ho W. Development of one-dimensional band structure in artificial gold chains. Science, 2002, 297: 1853
[6]
21 Wallis T M, Nilius N, Ho W. Electronic density oscillations in gold atomic chains assembled atom by atom. Phys Rev Lett, 2002, 89: 236802
[7]
22 F?lsch S, Hyldgaard P, Koch R, et al. Quantum confinement in monatomic Cu chains on Cu(111). Phys Rev Lett, 2004, 92: 056803
[8]
23 Hirjibehedin C F, Lutz C P, Heinrich A J. Spin coupling in engineered atomic structures. Science, 2006, 312: 1021
[9]
24 Lagoute J, Nacci C, F?lsch S. Doping of monatomic Cu chains with single Co atoms. Phys Rev Lett, 2007, 98: 146804
[10]
25 Wahl P, Simon P, Diekhoener L, et al. Exchange interaction between single magnetic adatoms. Phys Rev Lett, 2007, 98: 056601
[11]
26 Khajetoorians A A, Wiebe J, Chilian B, et al. Realizing all-spin-based logic operations atom by atom. Science, 2011, 332: 1062-1064
[12]
27 Gomes K K, Mar W, Ko W, et al. Designer Dirac fermions and topological phases in molecular graphene. Nature, 2012, 483: 306-310
[13]
28 Loth S, Baumann S, Lutz C P, et al. Bistability in atomic-scale antiferromagnets. Science, 2012, 335: 196-199
[14]
29 Chambliss D D, Wilson R J, Chiang S. Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations. Phys Rev Lett, 1991, 66: 1721-1724
[15]
30 Brune H, Giovannini M, Bromann K, et al. Self-organized growth of nanostructure arrays on strain-relief patterns. Nature, 1998, 394: 451-453
[16]
31 Whitesides G M, Grzybowski B. Self-assembly at all scales. Science, 2002, 295: 2418-2421
[17]
32 Nilius N, Rienks E D L, Rust H P, et al. Self-organization of gold atoms on a polar FeO(111) surface. Phys Rev Lett, 2005, 95: 066101
[18]
33 R?der H, Hahn E, Brune H, et al. Building one- and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature, 1993, 366: 141-143
[19]
34 Gambardella P, Blanc M, Brune H, et al. One-dimensional metal chains on Pt vicinal surfaces. Phys Rev B, 2000, 61: 2254-2262
[20]
35 Pennec Y, Auw?rter W, Schiffrin A, et al. Supramolecular gratings for tuneable confinement of electrons on metal surfaces. Nat Nanotech, 2007, 2: 99-103
[21]
36 Ma X D, Bazhanov D I, Fruchart O, et al. Strain relief guided growth of atomic nanowires in a Cu3N-Cu(110) molecular network. Phys Rev Lett, 2009, 102: 205503
[22]
37 Barth J V, Costantini G, Kern K. Engineering atomic and molecular nanostructures at surfaces. Nature, 2005, 437: 671-679
[23]
38 Repp J, Moresco F, Meyer G, et al. Substrate mediated long-range oscillatory interaction between adatoms: Cu/Cu(111). Phys Rev Lett, 2000, 85: 2981-2984
[24]
39 Koutecky J. A contribution to the molecular-orbital theory of chemisorption. Trans Faraday Soc, 1958, 54: 1038
[25]
40 Grimley T B. The indirect interaction between atoms or molecules adsorbed on metals. Proc Phys Soc, 1967, 90: 751
[26]
42 Lau K H, Kohn W. Indirect long-range oscillatory interaction between adsorbed atoms. Surf Sci, 1978, 75: 69
[27]
43 Tsong T T. Direct observation of interactions between individual atoms on tungsten surfaces. Phys Rev B, 1972, 6: 417-426
[28]
44 Tsong T T. Field-ion microscope observations of indirect interaction between adatoms on metal surfaces. Phys Rev Lett, 1973, 31: 1207-1210
[29]
9 Elmers H J, Hauschild J, H?che H, et al. Submonolayer magnetism of Fe(110) on W(110): Finite width scaling of stripes and percolation between islands. Phys Rev Lett, 1994, 73: 898-901
[30]
12 Brovko O O, Ignatiev P A, Stepanyuk V S, et al. Tailoring exchange interactions in engineered nanostructures: An ab initio study. Phys Rev Lett, 2008, 101: 036809
[31]
13 Smirnov A S, Negulyaev N N, Hergert W, et al. Magnetic behavior of one- and two-dimensional nanostructures stabilized by surface-state electrons: A kinetic Monte Carlo study. New J Phys, 2009, 11: 063004
[32]
14 Ignatiev P A, Negulyaev N N, Niebergall L, et al. Electronic structure and magnetism of monatomic one-dimensional metal nanostructures on metal surfaces. Phys Status Solidi B, 2010, 247: 2537-2549
[33]
45 Hyldgaard P, Persson M. Long-ranged adsorbate-adsorbate interactions mediated by a surface-state band. J Phys Condens Matter, 2000, 12: L13-L19
[34]
48 Hu J, Teng B, Wu F, et al. Fe nanostructures stabilized by long-range interactions on Cu(111): Kinetic Monte Carlo simulations. New J Phys, 2008, 10: 023033
[35]
49 Crain J N, Pierce D T. End states in one-dimensional atom chains. Science, 2005, 307: 703-706
[36]
50 Lagoute J, Liu X, F?lsch S. Electronic properties of straight, kinked, and branched Cu/Cu(111) quantum wires: A low-temperature scanning tunneling microscopy and spectroscopy study. Phys Rev B, 2006, 74: 125410
[37]
51 Menzel M, Mokrousov Y, Wieser R, et al. Information transfer by vector spin chirality in finite magnetic chains. Phys Rev Lett, 2012, 108: 197204
[38]
53 Avellino M, Fisher A J, Bose S. Quantum communication in spin systems with long-range interactions. Phys Rev A, 2006, 74: 012321
[39]
58 Ma L Y, Tang L, Guan Z L, et al. Quantum size effect on adatom surface diffusion. Phys Rev Lett, 2006, 97: 266102
[40]
59 Negulyaev N N, Stepanyuk V S, Niebergall L, et al. Direct evidence for the effect of quantum confinement of surface-state electrons on atomic diffusion. Phys Rev Lett, 2008, 101: 226601
[41]
65 ?zer M M, Jia Y, Wu B, et al. Quantum stability and reentrant bilayer-by-bilayer growth of atomically smooth Pb films on semiconductor substrates. Phys Rev B, 2005, 72: 113409
[42]
69 Qiu Z Q, Pearson J, Berger A, et al. Short-period oscillations in the interlayer magnetic coupling of wedged Fe(100)/Mo(100)/Fe(100) grown on Mo(100) by molecular-beam epitaxy. Phys Rev Lett, 1992, 68: 1398-1401
[43]
70 Li J, Przybylski M, Yildiz F, et al. Oscillatory magnetic anisotropy originating from quantum well states in Fe films. Phys Rev Lett, 2009, 102: 207206
[44]
71 Lang N D, Avouris P. Oscillatory conductance of carbon-atom wires. Phys Rev Lett, 1998, 81: 3515-3518
[45]
72 Guo Y, Zhang Y F, Bao X Y, et al. Superconductivity modulated by quantum size effects. Science, 2004, 306: 1915-1917
[46]
73 Li J, Schneider W D, Berndt R, et al. Electron confinement to nanoscale Ag islands on Ag(111): A quantitative study. Phys Rev Lett, 1998, 80: 3332-3335
[47]
74 Niebergall L, Rodary G, Ding H F, et al. Electron confinement in hexagonal vacancy islands: Theory and experiment. Phys Rev B, 2006, 74: 195436
[48]
75 Pietzsch O, Okatov S, Kubetzka A, et al. Spin-resolved electronic structure of nanoscale cobalt islands on Cu(111). Phys Rev Lett, 2006, 96: 237203
[49]
76 Oka H, Ignatiev P A, Wedekind S, et al. Spin-dependent quantum interference within a single magnetic nanostructure. Science, 2010, 327: 843-846
[50]
77 Ding H F, Pearson J E, Li D, et al. Electron-beam tip/sample heating device for a scanning tunneling microscopy. Rev Sci Instrum, 2005, 76: 123703
[51]
81 Cao R X, Zhang X P, Miao B F, et al. Self-organized gd atomic superlattice on Ag(111): Scanning tunneling microscopy and kinetic Monte Carlo simulations. Surf Sci, 2013, 610: 65-69
[52]
82 Ternes M, Weber C, Pivetta M, et al. Scanning-tunneling spectroscopy of surface-state electrons scattered by a slightly disordered two-dimensional dilute “solid”: Ce on Ag(111). Phys Rev Lett, 2004, 93: 146805
[53]
83 Cao R X, Zhang X P, Miao B F, et al. From self-assembly to quantum guiding: A review of magnetic atomic structures on noble metal surfaces. Chin Phys B, 2014, 23: 38102
[54]
84 Li J, Schneider W D, Berndt R. Local density of states from spectroscopic scanning-tunneling-microscope images: Ag(111). Phys Rev B, 1997, 56: 7656-7659
[55]
1 Fruchart O, Klaua M, Barthel J, et al. Self-organized growth of nanosized vertical magnetic Co pillars on Au(111). Phys Rev Lett, 1999, 83: 2769-2772
[56]
87 Cao R X, Zhong Z F, Hu J, et al. Spectroscopy of self-assembled one-dimensional atomic string: The role of step edge. Appl Phys Lett, 2013, 103: 081608
[57]
88 Cao R X, Miao B F, Zhong Z F, et al. Two-dimensional quantum diffusion of Gd adatoms in nano-size Fe corrals. Phys Rev B, 2013, 87: 085415
[58]
89 Hu J, Cao R X, Miao B F, et al. Size-dependent quantum diffusion of Gd atoms within Fe nano-corrals. Surf Sci, 2013, 618: 148-153
[59]
90 Pivetta M, Pacchioni G E, Schlickum U, et al. Formation of Fe cluster superlattice in a metal-organic quantum-box network. Phys Rev Lett, 2013, 110: 086102
[60]
91 Cao R X, Liu Z, Miao B F, et al. Self-regulated Gd atom trapping in open Fe nanocorrals. Phys Rev B, 2014, 90: 045433
[61]
2 Knorr N, Brune H, Epple M, et al. Long-range adsorbate interactions mediated by a two-dimensional electron gas. Phys Rev B, 2002, 65: 115420
[62]
3 Silly F, Pivetta M, Ternes M, et al. Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea. Phys Rev Lett, 2004, 92: 016101
[63]
4 Silly F, Pivetta M, Ternes M, et al. Coverage-dependent self-organization: From individual adatoms to adatom superlattices. New J Phys, 2004, 6: 16
[64]
5 Bader S D, Parkin S S P. Spintronics. Annu Rev Cond Matter Phys, 2010, 1: 71-88
[65]
6 Sun S, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287: 1989-1992
[66]
7 Gambardella P, Dallmeyer A, Maiti K, et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature, 2002, 416: 301-304
[67]
8 Gambardella P, Dallmeyer A, Maiti K, et al. Oscillatory magnetic anisotropy in one-dimensional atomic wires. Phys Rev Lett, 2004, 93: 077203
[68]
10 Shen J, Skomski R, Klaua M, et al. Magnetism in one dimension: Fe on Cu(111). Phys Rev B, 1997, 56: 2340-2343
[69]
11 Stepanyuk V S, Klavsyuk A N, Niebergall L, et al. End electronic states in Cu chains on Cu(111): Ab initio calculations. Phys Rev B, 2005, 72: 153407
[70]
15 Hashemi H, Hergert W, Stepanyuk V S. Magnetic states of M-Fe wires (M=Sc-Ni) on vicinal Cu(111) from first principles. Phys Rev B, 2010, 81: 104418
[71]
41 Einstein T L, Schrieffer J R. Indirect interaction between adatoms on a tight-binding solid. Phys Rev B, 1973, 7: 3629-3648
[72]
46 Negulyaev N N, Stepanyuk V S, Niebergall L, et al. Melting of two-dimensional adatom superlattices stabilized by long-range electronic interactions. Phys Rev Lett, 2009, 102: 246102
[73]
47 Negulyaev N N, Stepanyuk V S, Niebergall L, et al. Self-organization of Ce adatoms on Ag(111): A kinetic Monte Carlo study. Phys Rev B, 2006, 74: 035421
[74]
52 Bose S. Quantum communication through an unmodulated spin chain. Phys Rev Lett, 2003, 91: 207901
[75]
54 Hartmann M J, Reuter M E, Plenio M B. Excitation and entanglement transfer versus spectral gap. New J Phys, 2006, 8: 94
[76]
55 Hyldgaard P, Einstein T L. Surface-state mediated three-adsorbate interaction: Exact and numerical results and simple asymptotic expression. Appl Surf Sci, 2003, 212-213: 856-860
[77]
56 Hyldgaard P, Einstein T L. Interactions mediated by surface states: From pairs and trios to adchains and ordered overlayers. J Cryst Growth, 2005, 275: e1637-e1642
[78]
57 Stepanyuk V S, Negulyaev N N, Niebergall L, et al. Adatom self-organization induced by quantum confinement of surface electrons. Phys Rev Lett, 2006, 97: 186403
[79]
60 Hinch B J, Koziol C, Toennies J P, et al. Evidence for quantum size effects observed by helium atom scattering during the growth of Pb on Cu(111). Europhys Lett, 1989, 10: 341-346
[80]
61 Smith A R, Chao K J, Niu Q, et al. Formation of atomically flat silver films on gaas with a “silver mean” quasi periodicity. Science, 1996, 273: 226-228
[81]
62 Gavioli L, Kimberlin K R, Tringides M C, et al. Novel growth of Ag islands on Si(111): Plateaus with a singular height. Phys Rev Lett, 1999, 82: 129-132
[82]
63 Yeh V, Berbil-Bautista L, Wang C Z, et al. Role of the metal/semiconductor interface in quantum size effects: Pb/Si(111). Phys Rev Lett, 2000, 85: 5158-5161
[83]
64 Luh D A, Miller T, Paggel J J, et al. Quantum electronic stability of atomically uniform films. Science, 2001, 292: 1131
[84]
66 Zhang Z, Niu Q, Shih C K. “Electronic growth” of metallic overlayers on semiconductor substrates. Phys Rev Lett, 1998, 80: 5381-5384
[85]
67 Hache F, Ricard D, Flytzanis C. Optical nonlinearities of small metal particles: Surface-mediated resonance and quantum size effects. J Opt Soc Am B, 1986, 3: 1647
[86]
68 Liu F, Khanna S N, Jena P. Quantum size effect on the magnetism of finite systems. Phys Rev B, 1990, 42: 976-979
[87]
78 Zhang X P, Miao B F, Sun L, et al. Atomic superlattice formation mechanism revealed by scanning tunneling microscopy and kinetic Monte Carlo simulations. Phys Rev B, 2010, 81: 125438
[88]
79 Negulyaev N N, Stepanyuk V S, Niebergall L, et al. Effect of strain relaxations on heteroepitaxial metal-on-metal island nucleation and superlattice formation: Fe on Cu(111). Phys Rev B, 2009, 79: 195411
[89]
80 Stepanyuk V S, Niebergall L, Longo R C, et al. Magnetic nanostructures stabilized by surface-state electrons. Phys Rev B, 2004, 70: 075414
[90]
85 Ding H F, Stepanyuk V S, Ignatiev P A, et al. Self-organized long-period adatom strings on stepped metal surfaces: Scanning tunneling microscopy, ab initio calculations, and kinetic Monte Carlo simulations. Phys Rev B, 2007, 76: 033409
[91]
86 Smoluchowski R. Anisotropy of the electronic work function of metals. Phys Rev, 1941, 60: 661-674