33 Li Y N. Turnover value relationship and belowground biomass in alpine meadow and meteorological conditions analysis (in Chinese). Chin J Agrometeorol, 1998, 19: 36-38 [李英年. 高寒草甸植物地下生物量与气象条件的关系及周转值分析. 中国农业气象, 1998, 19: 36-
[2]
34 Klein J A, Harte J, Zhao X Q. Dynamic and complex microclimate responses to warming and grazing manipulations. Glob Change Biol, 2005, 11: 1440-1451
[3]
35 Zhou H K, Zhao X Q, Zhao L, et al. Restoration capability of alpine meadow ecosystem on Qinghai-Tibetan Plateau (in Chinese). Chin J Ecol, 2008, 27: 697-704 [周华坤, 赵新全, 赵亮, 等. 青藏高原高寒草甸生态系统的恢复能力. 生态学杂志, 2008, 27: 697-
[4]
36 Zhou X M, Li J H. The main vegetation types and geographical distribution at Haibei alpine meadow ecosystem research station (in Chinese). Alpine Meadow Ecosystem, Episode 1. Lanzhou: Gansu People's Publishing House, 1982. 9-10 [周兴民, 李建华. 海北高寒草甸生态系统定位站的主要植被类型及地理分布规律. 高寒草甸生态系统(第1集). 兰州: 甘肃人民出版社, 1982. 9-
[5]
37 Yang F T, Wang Q J, Shi S H. The allocation of the biomass and energy in Kobresia humilis meadow, Haibei districi, Qinhai Province (in Chinese). Chin J Plant Ecol, 1987, 11: 106-112 [杨福囤, 王启基, 史顺海. 青海海北地区矮嵩草草甸生物量和能量的分配. 植物生态学与地植物学学报, 1987, 11: 106-
[6]
38 Li Y N, Zhao L, Wang Q X, et al. Estimation of biomass and annual turnover quantities of Potentilla froticosa shrub (in Chinese). Acta Agrest Sin, 2006, 14: 72-76 [李英年, 赵亮, 王勤学, 等. 高寒金露梅灌丛生物量及年周转量. 草地学报, 2006, 14: 72-
[7]
39 Klein J A, Harte J, Zhao X Q. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol Appl, 2007, 17: 541-557
[8]
40 Tan H P, Chen N W, Huang P. Study on pretreatment methods to determine in soil (in Chinese). China Measur Test Technol, 2003, 29: 3-6 [谭和平, 陈能武, 黄苹. 土壤无机元素测定的前处理方法研究. 中国测试技术, 2003, 29: 3-
[9]
41 Loik M E, Redar S P, Harte J. Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. Funct Ecol, 2000, 14: 166-175
[10]
42 Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234-240
[11]
43 Zhou H K, Zhou L, Zhao X Q, et al. Study of formation pattern of below-ground biomass in Potentilla fruticosa shrub (in Chinese). Acta Pratacult Sin, 2002, 11: 59-65 [周华坤, 周立, 赵新全, 等. 金露梅灌丛地下生物量形成规律的研究. 草业学报, 2002, 11: 59-
[12]
44 Liu W, Zhou H K, Zhou L. Biomass distribution pattern of degraded grassland in alpine meadow (in Chinese). Grassland China, 2005, 27: 9-15 [刘伟, 周华坤, 周立. 不同程度退化草地生物量的分布模式. 中国草地, 2005, 27: 9-
[13]
45 Wang Q M, Wang W Y, Deng Z F. The dynamics of biomass and the allocation of energy in Alpine kobresia meadow communities, Haibei region of Qinghai Province (in Chinese). Chin J Plant Ecol, 1998, 22: 222-223 [王启基, 王文颖, 邓自发. 青海海北地区高山嵩草草甸植物群落生物量动态及能量分配. 植物生态学报, 1998, 22: 222-
[14]
46 Jing M X, Wang T Z. Simulation of crowth and hydrotropism of maize poots (in Chinese). Bull Bot, 1996, 38: 384-390 [金明现, 王天铎. 玉米根系生长及向水性的模拟. 植物学报, 1996, 38: 384-
[15]
49 Bonin C, Flores J, Lal R, et al. Root characteristics of perennial warm-season grasslands managed for grazing and biomass production. Agronomy, 2013, 3: 508-523
[16]
50 Friend A L, Coleman M D, Isebrands J G. Carbon allocation to root and shoot systems of woody plants. In: Davis T D, Haissig B E, eds. Biology of Adventitious Root Formation. New York: Plenum Publishing Co., 1994. 245-273
[17]
51 Sanaullah M, Chabbi A, Rumpel C, et al. Carbon allocation in grassland communities under drought stress followed by 14C pulse labeling. Soil Biol Bioch, 2012, 55: 132-139
[18]
52 Wang D M, Yang F M. Carbon and nitrogen stoichiometry at different growthstages in legumes and grasses (in Chinese). Pratacult Sci, 2011, 28: 921-925 [王冬梅, 杨惠敏. 4 种牧草不同生长期C, N生态化学计量特征. 草业科学, 2011, 28: 921-
[19]
53 Edwards E J, Benham D G, Marland L A, et al. Root production is determined by radiation flux in a temperate grassland community. Glob Change Biol, 2004, 10: 209-227
[20]
54 Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 2000, 48: 21-51
[21]
56 Tao Z, Shen C D, Gao Q Z, et al. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem. Sci China Ser D Earth Sci, 2007, 50: 1103-1114 [陶贞, 沈承德, 高全洲, 等. 高寒草甸土壤有机碳储量和CO2通量. 中国科学D辑: 地球科学, 2007, 37: 553-
[22]
1 Hansen J, Sato M, Ruedy R, et al. Global temperature change. Proc Natl Acad Sci USA, 2006, 103: 14288-14293
[23]
2 Hansen J, Ruedy R, Sato M, et al. Global surface temperature change. Rev Geophys, 2010, 48: RG4004
[24]
7 Pehyuelas J, Prieto P, Beier C, et al. Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: Reductions in primary productivity in the heat and drought year of 2003. Glob Change Biol, 2007, 13: 2563-2581
[25]
8 Wang S, Duan J, Xu G, et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93: 2365-2376
[26]
18 Wu Z, Dijkstra P, Koch G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob Change Biol, 2011, 17: 927-942
[27]
19 Yan Y, Zhang J G, Zhang J H, et al. The belowground biomass in alpine grassland in Nakchu Prefecture of Tibet (in Chinese). Acta Ecol Sin, 2005, 25: 2818-2823 [鄢燕, 张建国, 张锦华, 等. 西藏那曲地区高寒草地地下生物量. 生态学报, 2005, 25: 2818-
[28]
23 Gorissen A, Tietema A, Joosten N N, et al. Climate change affects carbon allocation to the soil in shrublands. Ecosystems, 2004, 7: 650-661
[29]
24 Hawkes C V, Hartley I P, Ineson P, et al. Soil temperature affects carbon allocation within Arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biol, 2008, 14: 1181-1190
[30]
15 Zogg G P, Zak D R, Ringelberg D B, et al. Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J, 1997, 61: 475-481
[31]
16 Shen H, Klein J A, Zhao X, et al. Leaf photosynthesis and simulated carbon budget of Gentiana straminea from a decade-long warming experiment. J Plant Ecol, 2006, 2: 207-216
[32]
17 Li N, Wang G X, Yan Y, et al. Short-term effects of temperature enhancement on communinity structure and biomass of alpine meadow in the Qinhai-Tibet Platrau (in Chinese). Acta Ecol Sin, 2011, 31: 895-905 [李娜, 王根绪, 杨燕, 等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响. 生态学报, 2011, 31: 895-
[33]
20 Arndt S K, Wanek W. Use of decreasing foliar carbon isotope discrimination during water limitation as a carbon tracer to study whole plant carbon allocation. Plant Cell Environ, 2002, 25: 609-616
[34]
21 Ericsson T, Rytter L, Vapaavuori E. Physiology of carbon allocation in trees. Biomass Bioenergy, 1996, 11: 115-127
[35]
22 Gavito M E, Curtis P S, Mikkelsen T N, et al. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth. J Exp Bot, 2001, 52: 1913-1923
[36]
25 Kummerow J, Ellis B A. Temperature effect on biomass production and root/shoot biomass ratios in two arctic sedges under controlled environmental conditions. Can J Bot, 1984, 62: 2150-2153
[37]
26 Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol, 2000, 20: 1729-1742
[38]
27 Ren G Y, Chu Z Y, Zhou Y Q, et al. Recent progresses in studies of regional temperature changes in China. Clim Environ Res, 2000, 24: 547-553 [任国玉, 初子莹, 周雅清, 等. 中国气温变化研究最新进展. 气候与环境研究, 2006, 10: 701-
[39]
28 Zhao X Q, Zhou X M. Ecological basis of alpine meadow ecosystem management in Tibet: Haibei Alpine Meadow Ecosystem Research Station. Ambio, 1999, 28: 642-647
[40]
29 Zhou H K, Zhou X M, Zhao X Q. A prelimingary study of the influence of simulated greenhouse effect on a Kobresia humilis meadow (in Chinese). Chin J Plant Ecol, 2000, 24: 547-553 [周华坤, 周兴民, 赵新全. 模拟增温效应对矮嵩草草甸影响的初步研究. 植物生态学报, 2000, 24: 547-
[41]
30 Klein J A, Harte J, Zhao X Q. Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau. Ecosystems, 2008, 11: 775-789
[42]
31 Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett, 2004, 7: 1170-1179
[43]
32 Li Y N, Zhao L, Zhao X Q, et al. Effects of a 5-years mimic Temperature Increase to the structure and productivity of Kobresia humilis meadow (in Chinese). Acta Agrest Sin, 2004, 12: 236-239 [李英年, 赵亮, 赵新全, 等. 5年模拟增温后矮嵩草草甸群落结构及生产量的变化. 草地学报, 2004, 12: 236-
[44]
47 Davidson E A, Trumbore S E, Amundson R. Biogeochemistry: Soil warming and organic carbon content. Nature, 2000, 408: 789-790
[45]
48 Luo W, Jiang Y, Lü X, et al. Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China. PLoS One, 2013, 8: e71749
[46]
55 Niu S, Sherry R A, Zhou X, et al. Nitrogen regulation of the climate-carbon feedback: Evidence from a long-term global change experiment. Ecology, 2010, 91: 3261-3273
[47]
57 Gregory P J. Plant Roots: Growth, Activity and Interactions with the Soil. New Jersey: John Wiley & Sons, 2008
[48]
58 Zhang W J, Peng P Q, Tong C L, et al. Characteristics of distribution and composition of orianic carbon in Dongting lake floodplain (in Chinese). Environ Sci, 2005, 26: 56-60 [张文菊, 彭佩钦, 童成立, 等. 洞庭湖湿地有机碳垂直分布与组成特征. 环境科学, 2005, 26: 56-
[49]
3 Oreskes N. The scientific consensus on climate change. Science, 2004, 306: 1686
[50]
4 Rustad L, Campbell J, Marion G, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126: 543-562
[51]
5 Wang L X, Chen H L, Li Q, et al. Research advances in plant phenology and climate (in Chinese). Acta Ecol Sin, 2010, 30: 447-454 [王连喜, 陈怀亮, 李琪, 等. 植物物候与气候研究进展. 生态学报, 2010, 30: 447-
[52]
6 Dormann C F, Woodin S J. Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Funct Ecol, 2002, 16: 4-17
[53]
9 Luo Y, Sherry R, Zhou X, et al. Terrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of biofuel feedstock harvest. GCB Bioenergy, 2009, 1: 62-74
[54]
10 De Boeck H J, Lemmens C, Zavalloni C, et al. Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences, 2008, 5: 585-594
[55]
11 de Valpine P, Harte J. Plant responses to experimental warming in a montane meadow. Ecology, 2001, 82: 637-648
[56]
12 Liu W, Zhang Z H E, Wan S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol, 2009, 15: 184-195
[57]
13 Atkin O K, Edwards E J, Loveys B R. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol, 2000, 147: 141-154
[58]
14 Hartley A E, Neill C, Melillo J M, et al. Plant performance and soil nitrogen mineralization in response to simulation climate change in subarctic dwarf shrub heath. Oikos, 1999, 86: 331-343