1 Wilson D F, Finikova O S, Lebedev A Y, et al. Measuring oxygen in living tissue: Intravascular, interstitial, and “tissue” oxygen measurements. Adv Exp Med Biol, 2011, 701: 53-59
[2]
2 Semenza G L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factorⅠ. Biol Chem J, 2007, 405: 1-9
[3]
6 Koren K, Dmitriev R I, Borisov S M, et al. Complexes of IrⅢ-octaethylporphyrin with peptides as probes for sensing cellular O2. ChemBioChem, 2012, 13: 1184-1190
[4]
7 Zhang S J, Hosaka M, Yoshihara T, et al. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Cancer Res, 2010, 70: 4490-4498
[5]
8 David A G, Selke M. Singlet oxygen generation by cyclometalated complexes and applications. Photochem Photobiol, 2014, 90: 257-274
[6]
9 Xue R P, Behera P, Viaiano M S, et al. Rapid response oxygen-sensing nanofibers. Mater Sci Eng C, 2013, 33: 3450-3457
[7]
10 Xue R P, Behera P, Xu J, et al. Polydimethylsiloxane core-polycaprolactone shell nanofibers as biocompatible, real-time oxygen sensors. Mater Sci Eng C, 2014, 192: 697-707
[8]
12 Zhang G Q, Gregory M P, Dewhirst M W, et al. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat Mater, 2009, 8: 747-751
[9]
13 Xiang H F, Zhou L, Feng Y, et al. Tunable fluorescent/phosphorescent platinum(II) porphyrin-fluorene copolymers for ratiometric dual emissive oxygen sensing. Inorg Chem, 2012, 51: 5208-5212
[10]
14 Liu J N, Liu Y, Bu W B, et al. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J Am Chem Soc, 2014, 136: 9701-9709
[11]
15 Kersey F R, Zhang G Q, Palmer G M, et al. Stereocomplexed poly(lactic acid)-poly(ethylene glycol) nanoparticles with dual-emissive boron dyes for tumor accumulation. ACS Nano, 2010, 4: 4989-4996
[12]
16 Lebedev A Y, Cheprakov A V, Sakadzic S, et al. Dendritic phosphorescent probes for oxygen imaging in biological systems. ACS Appl Mater Interfaces, 2009, 1: 1292-1304
[13]
17 Vanderkooi J M, Maniara G, Green T J, et al. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem, 1987, 262: 5476-5482
[14]
18 Feng Y, Cheng J H, Zhou X G, et al. Ratiometric optical oxygen sensing: A review in respect of material design. Analyst, 2012, 137: 4885-4901
[15]
19 Quaranta M, Borisov S M, Klimant I. Indicators for optical oxygen sensors. Bioanal Rev, 2012, 4: 115-157
[16]
21 Wu W H, Guo S, Zhao J Z. The development of triplet-triplet annihilation upconversion (in Chinese). Sci Sin Chim, 2012, 42:1381-1398 [伍晚花, 郭颂, 赵建章. 三重态-三重态湮灭上转换的研究进展. 中国科学: 化学, 2012, 42: 1381-
[17]
22 Papkovsky D B, Dmitriev R I. Biological detection by optical oxygen sensing. Chem Soc Rev, 2013, 42: 8700-8732
[18]
24 Sharma A, Wolfbeis O S. Unusally efficient quenching of the fluorescence of an energy transfer-based optical sensor for oxygen. Anal Chim Acta, 1988, 212: 261-265
[19]
25 Lashkov G I, Kavtrev A F. Quenching of the fluorescence of organic luminophores by oxygen in thin polymer films. Polym Sci USSR, 1986, 28: 1885-1891
[20]
26 Papkovsky D B, O'Riordan T C. Emerging applications of phosphorescent metalloporphyrins. J Fluoresc, 2005, 15: 569-584
[21]
27 Ongun M Z, Oter O, Sabanci G, et al. Enhanced stability of ruthenium complex in ionic liquid doped electrospun fibers. Sens Actuators B, 2013, 183: 11-19
[22]
28 Borisov S M, Klimant I. Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem, 2007, 79: 7501-7509
[23]
29 Sacksteder L, Lee M, Demas J N, et al. Long-lived, highly luminescent rhenium(I): Complexes as molecular probes: Intra- and intermolecular excited-state interactions. J Am Chem Soc, 1993, 115: 8230-8238
[24]
30 Yoshihara T, Yamaguchi Y, Hosaka M, et al. Ratiometric molecular sensor for monitoring oxygen levels in living cells. Angew Chem Int Ed, 2012, 51: 4148-4151
[25]
31 Brinas R P, Troxler T, Vinogradov S A, et al. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J Am Chem Soc, 2005, 127: 11851-11862
[26]
32 Roussakis E, Spencer J A, Lin C P, et al. Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem, 2014, 86: 5937-5945
[27]
33 Finikova O S, Lebedev A Y, Aprelev A, et al. Oxygen microscopy by two-photon-excited phosphorescence. Chem Phys Chem, 2008, 9: 1673-1679
[28]
34 Kazmi S M S, Salvaggio A J, Estrada A D, et al. Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion. Biomed Opt Express, 2013, 4: 1061-1073
[29]
35 Spencer J A, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature, 2014, 508: 269-273
[30]
36 Liu X H, Sun W, Zou L Y, et al. Neutral cuprous complexes as ratiometric oxygen gas sensor. Dalton Trans, 2012, 41: 1312-1319
[31]
37 Liu Y F, Guo H M, Zhao J Z. Ratiometric luminescent molecular oxygen sensors based on uni-luminophores of C∧N Pt(II)(acac) complexes that show intense visible-light absorption and balanced fluorescence/phosphorescence dual emission. Chem Commun, 2011, 47: 11471-11473
[32]
38 Liu L L, Huang D D, Draper S M, et al. Visble light-harvesting trans bis(alkylphosphine) platinum(II)-alkynyl complexes showing long-lived triplet excited states as triplet photosensitizers for triplet-triplet annihilation upconversion. Dalton Trans, 2013, 42: 10694-10706
[33]
39 Lin C J, Chen C Y, Kundu S K, et al. Unichromophoric platinum-acetylides that contain pentiptycene scaffolds: Torsion-induced dual emission and steric shielding of dynamic quenching. Inorg Chem, 2014, 53: 737-745
[34]
46 Kodrashina A V, Dmitriev R I, Borisov S M, et al. A phosphorescent nanoparticle-based probe for sensing and imaging of (intra)cellular oxygen in multiple detection modalities. Adv Funct Mater, 2012, 22: 4931-4939
[35]
47 Dmitriev R I, Borisov S M, Kondrashina A V, et al. Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cell Mol Life Sci, 2015, 72: 367-381
[36]
48 Shi H F, Ma X, Zhao Q, et al. Ultrasmall phosphorescent polymer dots for ratiometric oxygen sensing and photodynamic cancer therapy. Adv Funct Mater, 2014, 24: 4823-4830
[37]
50 Wang X D, Wolfeis O S. Fiber-optic chemical sensors and biosensors (2008-2012). Anal Chem, 2012, 85: 487-508
[38]
51 Achatz D E, Meier R J, Fischer L H, et al. Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. Angew Chem Int Ed, 2011, 50: 260-263
[39]
3 Freeman T M, Seitz W R. Oxygen probe based on tetrakis(alkylamino)ethylene chemiluminescence. Anal Chem, 1981, 53: 98-102
[40]
4 Hendricks H. Method of detecting oxygen in a gas. USA Patent, 3709663, 1973-01-09
[41]
5 Amao Y. Probes and polymers for optical sensing of oxygen. Microchim Acta, 2003, 143: 1-12
[42]
11 Ciriminna R, Pagliaro M. Organofluoro-silica xerogels as high-performance optical oxygen sensors. Analyst, 2009, 134: 1531-1535
[43]
20 Zhao J Z, Wu W H, Sun J F, et al. Triplet photosensitizers: From molecular design to applications. Chem Soc Rev, 2013, 42: 5323-5251
[44]
23 Wang X D, Wolfbeis O S. Optical methods for sensing and imaging oxygen: Materials, spectroscopies and applications. Chem Soc Rev, 2014, 43: 3666-3761
[45]
40 Xu H, Aylott J W, Kopelman R, et al. A Real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem, 2001, 73: 4124-4133
[46]
41 Koo Y E, Cao Y F, Kopelman R, et al. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal Chem, 2004, 76: 2498-2505
[47]
42 Park E J, Reid K R, Tang W, et al. Ratiometric fiber optic sensors for the detection of inter- and intra-cellular dissolved oxygen. J Mater Chem, 2005, 15: 2913-2919
[48]
43 Koo Y E, Ulbrich E E, Kim G, et al. Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity. Anal Chem, 2010, 82: 8446-8455
[49]
44 Napp J, Behnke T, Fischer L, et al. Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal Chem, 2011, 83: 9039-9046
[50]
45 Wu C F, Bull B, Christensen K, et al. Ratiometric single-nanoparticle oxygen sensors for biological imaging. Angew Chem Int Ed, 2009, 48: 2741-2745
[51]
49 Koo Y E, Kopelman R, Smith R, et al. Nanoparticle PEBBLE sensors in live cells and vivo. Annu Rev Anal Chem, 2009, 2: 57-76
[52]
52 Mclaurin E J, Greytak A B, Bawendi M G, et al. Two-photon absorbing nanocrystal sensors for ratiometric detection of oxygen. J Am Chem Soc, 2009, 131: 12994-13001
[53]
53 Lemon C M, Karnas E, Bawendi M G, et al. Two-photon oxygen sensing with quantum dot-porphyrin conjugates. Inorg Chem, 2013, 52: 10394-10406
[54]
54 Lemon C M, Curtin P N, Somers R C, et al. Metabolic tumor profiling with pH, oxygen, and glucose chemosensors on a quantum dot scaffold. Inorg Chem, 2014, 53: 1900-1915