全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

华北地区对流层臭氧长期变化趋势及影响因子分析

DOI: 10.1360/N972015-00155, PP. 2659-2666

Keywords: 华北地区,对流层臭氧,太阳周期,厄尔尼诺-南方涛动,准两年振荡

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用1979~2013年卫星对流层臭氧遥感数据序列,分析华北地区对流层臭氧的长期变化趋势,考察各主要影响因子和对流层顶高度变化对臭氧变化的影响作用.过去30多年来,华北地区对流层臭氧长期变化趋势在不同季节差异很大夏季对流层臭氧呈现快速增长趋势,增长率为1.28DU/10a;冬季表现出下降趋势,下降率为1.46DU/10a;在春季和秋季表现出波动性下降趋势.对流层臭氧夏季含量最高,一般在50DU上下,春季平均值大约40DU,秋季平均值35DU左右,冬季含量最小一般在26DU左右.对华北地区对流层臭氧分布变化产生显著影响的因子主要有太阳周期(Solar),厄尔尼诺-南方涛动(ENSO)和准两年振荡(QBO).其中,Solar的影响幅度可达到5~6DU,ENSO影响作用1~2DU,QBO影响一般小于1DU.对流层顶高度在年内不同季节存在显著周期变化,与对流层臭氧变化紧密相关,相关系数R=0.826,表明对流层顶高度年周期变化对对流层臭氧产生重要影响.从年代际时间尺度上,对流层顶高度不存在显著性变化趋势,对对流层臭氧变化趋势影响不大.

References

[1]  1 Mohnen V A, Goldstein W, Wang W C. Tropospheric ozone and climate change. Air Waste, 1993, 43:1332-1334
[2]  2 Kristie L E, Glenn M. Climate change:Tropospheric ozone and particulate matter, and health impacts. Environ Health Perspect, 2008, 116:1449-1455
[3]  3 Ren W, Tian H Q, Tao B, et al. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems. Glob Ecol Biogeogr, 2011, 20:391-406
[4]  4 Ziemke J R, Chandra S. Seasonal and interannual variabilities in tropical tropospheric ozone. J Geophys Res, 1999, 104:21425-21442
[5]  5 Ziemke J R, Chandra S, Bhartia P K. A new NASA data product:Tropospheric and stratospheric column ozone in the tropics derived from TOMS measurements. Bull Amer Meteorol Soc, 2000, 81:580-583
[6]  6 Cooper O R, Parrish D D, Ziemke J R, et al. Global distribution and trends of tropospheric ozone:An observation-based review. Elem Sci Anth, 2014, 2:1-28
[7]  7 Oltmans S J, Lefohn A S, Harris J M, et al. Long-term changes in tropospheric ozone. Atmos Environ, 2006, 40:3156-3173
[8]  8 Nassar R, Logan J A, Megretskaia I A, et al. Analysis of tropical tropospheric ozone, carbon monoxide, and water vapor during the 2006 El Nino using TES observations and the GEOS-Chem model. J Geophys Res, 2009, 114, doi:10.1029/2009JD011760
[9]  9 Oltmans S J, Lefohn A S, Shadwick D, et al. Recent tropospheric ozone changes:A pattern dominated by slow or no growth. Atmos Environ, 2013, 67:331-351
[10]  10 Lin M, Horowitz L W, Oltmans S J, et al. Tropospheric ozone trends at Mauna Loa observatory tied to decadal climate variability. Nat Geosci, 2014, 7:136-143
[11]  11 Fishman J, Watson C E, Larsen J C, et al. Distribution of tropospheric ozone determined from satellite data. J Geophys Res, 1990, 95:3599-3617
[12]  12 Fishman J, Wozniak A E, Creilson J K. Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique:identification of the regional aspects of air pollution. Atmos Chem Phys, 2003, 3:893-907
[13]  13 Fishman J, Creilson J K, Wozniak A E, et al. Interannual variability of stratospheric and tropospheric ozone determined from satellite measurements. J Geophys Res, 2005, 110:D20306
[14]  14 Chandra S, Ziemke J R, Martin R V. Tropospheric ozone at tropical and middle latitudes derived from TOMS/MLS residual:Comparison with a global model. J Geophys Res, 2003, 108, doi:10.1029/2002JD002912
[15]  15 Ziemke J R, Chandra S, Bhartia P K. Two new methods for deriving tropospheric column ozone from TOMS measurements:Assimilated UARS MLS/HALOE and convective-cloud differential techniques. J Geophys Res, 1998, 103:22115-22127
[16]  16 Ziemke J R, Chandra S, Duncan B N, et al. Tropospheric ozone determined from Aura OMI and MLS:Evaluation of measurements and comparison with the global modeling initiative's chemical transport model. J Geophys Res, 2006, 111, doi:10.1029/2006JD007089
[17]  17 Ziemke J R, Chandra S, Labow G J, et al. A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmos Chem Phys, 2011, 11:9237-9251
[18]  18 Kulkarni P S, Ghude S D, Bortoli D. Tropospheric ozone trend over three major inland Indian cities:Delhi, Hyderabad and Bangalore. Ann Geophys, 2010, 28:1879-1885
[19]  19 Tang G, Wang Y, Li X, et al. Spatial-temporal variations in surface ozone in Northern China as observed during 2009-2010 and possible implications for future air quality control strategies. Atmos Chem Phys, 2012, 12:2757-2776
[20]  20 Tang G, Li X, Wang Y, et al. Surface ozone trend details and interpretations in Beijing, 2001-2006. Atmos Chem Phys, 2009, 9:8813-8823
[21]  21 Wang Y, Zhang Y, Hao J, et al. Seasonal and spatial variability of surface ozone over China:Contributions from background and domestic pollution. Atmos Chem Phys, 2011, 11:3511-3525
[22]  22 Wang Y, Hao J, McElroy M B, et al. Year round measurements of O3 and CO at a rural site near Beijing:Variations in their correlations. Tellus, 2010, 62:228-241
[23]  23 Ding A J, Wang T, Thouret V, et al. Tropospheric ozone climatology over Beijing:Analysis of aircraft data from the MOZAIC program. Atmos Chem Phys, 2008, 8:1-13
[24]  24 Wang T, Ding A J, Gao J, et al. Strong ozone production in urban plumes from Beijing China. Geophys Res Lett, 2006, 33, doi:10.1029/2006GL027689
[25]  25 Shen L L, Wang Y X. Changes in tropospheric ozone levels over the three representative regions of China observed from space by the Tropospheric Emission Spectrometer (TES), 2005-2010. Chin Sci Bull, 2012, 57:2865-2871[沈路路, 王聿绚. 基于TES观测的 2005~2010年间中国3个代表性区域对流层臭氧浓度变化分析. 科学通报, 2012, 57:1454-
[26]  26 Huang F X, Liu N Q, Zhao M X. Solar cycle signal of tropospheric ozone over Tibetan Plateau. Chin J Geophys, 2009, 52:2201-2209[黄富祥, 刘年庆, 赵明现. 青藏高原对流层臭氧含量变化的太阳周期活动信号分析. 地球物理学报, 2009, 52:2201-
[27]  27 Deland M T, Cebula R P. Creation of a composite solar ultraviolet irradiance data set. J Geophys Res, 2008, 113:A11103, doi:10.1029/2008JA013401
[28]  28 Huang F X, Jiang Y, Huang G D, et al. Construction of long-time series of solar extreme ultraviolet radiation with F10.7 and Mg II. Chin J Geophys, 2013, 56:2912-2917[黄富祥, 江月, 黄光东, 等. 利用F10.7和Mg II构建太阳极紫外辐射长时间序列. 地球物理学报, 2013, 56:2912-
[29]  29 Ziemke J R, Chandra S, Oman L E, et al. A new ENSO index derived from satellite measurements of column ozone. Atmos Chem Phys, 2010, 10:3711-3721
[30]  30 Oman L D, Ziemke J R, Douglass A R, et al. The response of tropical tropospheric ozone to ENSO. Geophys Res Lett, 2011, 38:L13706, doi:10.1029/2011GL047865
[31]  31 Oman L D, Douglass A R, Ziemke J R, et al. The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation. J Geophys Res, 2013, 118:965976, doi:10.1029/2012JD018546
[32]  32 Sofieva V F, Rahpoe N, Tamminen J, et al. Harmonized dataset of ozone profiles from satellite limb and occultation measurements. Earch Syst Sci Data, 2013, 5:349-363
[33]  33 Stevenson D S, Dentener F J, Schultz M G, et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res, 2006, 111:D08301, doi:10.1029/2005JD006338
[34]  34 Chandra S, Ziemke J R, Tie X, et al. Elevated ozone in the troposphere over the Atlantic and Pacific oceans in the Northern Hemisphere. Geophys Res Lett, 2004, 31:L23102, doi:10.1029/2004GL020821
[35]  35 Richter A, Burrows J P, NüB H, et al. Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 2005, 437:129-132
[36]  36 Randel W J, Cobb J B. Coherent variations of monthly mean total ozone and lower stratospheric temperature. J Geophys Res, 1994, 99:5433-5447
[37]  37 Chandra S, Ziemke J R, Stewart R W. An 11-year solar cycle in tropospheric ozone from TOMS measurements. Geophys Res Lett, 1999, 26:185-188
[38]  38 Sassi F, Innison D K, Boville B A, et al. Effects of El Ni?o-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J Geophys Res, 2004, 109, doi:10.1029/2003JD004434
[39]  39 Neu J L, Lury T F, Manney G L, et al. Tropospheric ozone variations governed by changes in stratospheric circulation. Nat Geosci, 2014, doi:10.1038/NGEO20138

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133