全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

2015年4月25日尼泊尔Mw7.8级地震的孕震构造背景和特征

DOI: 10.1360/N972015-00559, PP. 2640-2655

Keywords: 喜马拉雅碰撞造山带,喜马拉雅主逆冲断裂,尼泊尔Mw7.8级地震,低角度逆冲型地震,构造背景,强震孕育模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

2015年4月25日尼泊尔发生Mw7.8级大地震,震源机制解结果一致表明该地震为低角度逆冲型.迄今发生百余次余震,其中包括Ms7.0级以上强余震,并触发正断层型小震群.此次地震发生于喜马拉雅碰撞造山带中段,位于1934年比哈-尼泊尔Mw~8.1级和1505年木斯塘Mw~8.2级地震之间的地震空区内,是自1950年察隅Mw~8.4级地震以来喜马拉雅主逆冲断裂上发生的最大震级地震.为更好地理解这次地震,本文综述喜马拉雅造山带的构造背景、断裂组合构成和几何形态、历史强震分布和破裂范围、现代小地震活动性特征、强震孕育的基本模式、震间加载和同震位移的空间互补性.在简单介绍同震破裂的断面初始解基本特征基础上,初步讨论了这次尼泊尔地震与喜马拉雅带特征型地震的关系,与2008年汶川地震的比较,以及低角度逆冲地震破裂的地表出露和对区域地震危险趋势的指示意义等问题.

References

[1]  7 Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia. Geophys Res Lett, 1993, 20:895-898
[2]  8 Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet. Science, 1992, 255:1663-1670
[3]  9 Molnar P, Tapponnier P. Cenozoic tectonics of Asia:Effects of a continental collision. Science, 1975, 189:419-426
[4]  10 Tapponnier P, Xu Z Q, Roger F, et al. Geology-oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294:1671-1677
[5]  11 Deng Q D, Zhang P Z, Ran Y K, et al. Basic characteristics of active tectonics of China. Sci China Ser D-Earth Sci, 2003, 46:356-372[邓起东, 张培震,冉永康, 等. 中国活动构造基本特征. 中国科学D 辑:地球科学, 2002, 32:1020-
[6]  12 Zhang P Z, Deng Q D, Zhang G M, et al. Active tectonic blocks and strong earthquakes in the continent of China. Sci China Ser D-Earth Sci, 2003, 46(Suppl):13-24[张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块. 中国科学D 辑:地球科学, 2003, 33:12-
[7]  13 Lavé J, Avouac J P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res, 2000, 105:5735-5770
[8]  14 Zeitler P K, Koons P O, Bishop M P, et al. Crustal reworking at Nanga Parbat, Pakistan:Metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics, 2001, 20:712-728
[9]  15 Xu Z Q, Yang J S, Qi X X, et al. India-Asia collision:A further discussion of N-S- and E-W-trending detachments and the orogenic mechanism of the modern Himalayas (in Chinese). Geol Bull China, 2006, 2:1-14[许志琴, 杨经绥, 戚学祥, 等. 印度/亚洲碰撞-南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论. 地质通报, 2006, 2:1-
[10]  16 Gansser A. The Geology of the Himalayas. New York:Wiley Interscience, 1964
[11]  17 LeFort P. Himalayas-collided range-present knowledge of continental arc. Am J Sci, 1975, A275:1-44
[12]  18 Nakata T. Active faults of the Himalaya of India and Nepal. In:Malinconico Jr L L, Lillie R, eds. Tectonics of the Western Himalayas. Geol Soc Amer, 1989, 243-264
[13]  19 Yeats R S, Nakata T, Farah A, et al. The Himalayan frontal fault system. Ann Tecton, Spec Iss, 1992, 6:85-98
[14]  20 Burchfiel B C, Chen Z, Hodges K V, et al. The South Tibet Detachment System, Himalayan orogen:Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol Soc Am Spec Pap, 1992, 269:1-41
[15]  21 Seeber L, Armbruster J G. Great detachment earthquakes along the Himalayan Arc and long-term forecasting. Earthq Predict, 1981, 259-277
[16]  22 Schelling D, Arita K. Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal, Himalaya. Tectonics, 1991, 10:851-862
[17]  23 Zhao W, Nelson K D, the Project INDEPTH Team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 1993, 366:557-559
[18]  24 Nelson K D, Zhao W, Brown L D, et al. Partially molten middle crust beneath Southern Tibet:Synthesis of project INDEPTH results. Science, 1996, 274:1684-1696
[19]  25 Hauck M L, Nelson K D, Brown L D, et al. Crustal structure of the Himalayan orogen at~90 east longitude from Project INDEPTH deep reflection profiles. Tectonics, 1998, 17:481-500
[20]  26 Harrison T M, Ryerson F J, Le Fort P, et al. A Late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism. Earth Planet Sci Lett, 1997, 146:E1-E8
[21]  27 Hubbard M S, Harrison T M. 40Ar/39Ar age constraints on deformation and metamorphism in the Main Central Thrust zone and Tibetan Slab, eastern Nepal Himalaya. Tectonics, 1989, 8:865-880
[22]  28 Copeland P, Le Fort P, Ray S M, et al. Cooling history of the Kathmandu crystalline nappe:Ar/Ar results. In:Paper presented at the 11th Himalayan-Karakoram-Tibet Workshop, Flagstaff, Arizona, 1999
[23]  29 Yin A. Cenozoic tectonic evolution of the Himalayan orogeny as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation (in Chinese). Earth Sci Front, 2006, 13:416-515[尹安. 喜马拉雅造山带新生代构造演化:沿走向变化的构造几何形态, 剥露历史和前陆沉积的约束. 地学前缘, 2006, 13:416-
[24]  30 Burbank D W, Beck R A, Mulder T. The Himalayan foreland basin. In:Yin A, Harrison T M, eds. The Tectonics of Asia. New York:Cambridge University Press, 1996
[25]  31 Carosi R, Lombardo B, Molli G, et al. The South Tibetan detachment system in the Rongbuk valley, Everest region. Deformation features and geological implications. J Asian Earth Sci, 1998, 16:299-311
[26]  32 Searle M P, Godin L. The South Tibetan Detachment system and the Manaslu leucogranite:A structural re-interpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J Geol, 2003, 111:505-523
[27]  33 Yin A, Dubey C S, Kelty T K, et al. Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogeny. Curr Sci, 2006, 90:195-206
[28]  34 Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages. Geology, 2007, 35:45-48
[29]  35 Zeng L, Liu J, Gao L, et al. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chin Sci Bull, 2009, 54:104-112[曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 2009, 54:373-
[30]  36 Webb A A G, Yin A, Harrison T M, et al. Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen. Geosphere, 2011, 7:1013-1061
[31]  37 Valdiya K S. The main boundary thrust zone of the Himalaya, India. Ann Tecton, 1992, 6:54-84
[32]  38 Davis D, Suppe J, Dahlen F A. Mechanics of fold and thrust belts and accretionary wedges. J Geophys Res, 1983, 88:1154-1172
[33]  39 Lavé J, Avouac J P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res, 2000, 105:5735-5770
[34]  40 Lavé J, Avouac J P. Fluvial incision and tectonic uplift across the Himalayas of Central Nepal. J Geophys Res, 2001, 106:26561-26592
[35]  41 Bilham R, Larson K, Freymueller J, et al. GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 1997, 386:61-64
[36]  42 Jouanne F, Mugnier J L, Pandey M, et al. Oblique convergence in Himalaya of western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett, 1999, 26:1933-1936
[37]  43 Larson K, Burgmann R, Bilham R, et al. Kinematics of the India Eurasia collision zone from GPS measurements. J Geophys Res, 1999, 104:1077-1093
[38]  44 DeCelles P G, Robinson D M, Quade J, et al. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics, 2001, 20:487-509
[39]  45 DeMets C, Gordon R G, Argus D F, et al. Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophys Res Lett, 1994, 21:2191-2194
[40]  46 Paul J, Burgmann R, Gaur V K, et al. The motion and active deformation of India. Geophys Res Lett, 2001, 28:647-650
[41]  47 Molnar P, Stock J M. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 2009, 28:TC3001
[42]  48 Ader T, Avouac J, Liu-Zeng J, et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust:Implications for seismic hazard. J Geophys Res, 2012, 117:B04403
[43]  49 Wesnousky S G, Kumar S, Mohindra R, et al. Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics, 1999, 18:967-976
[44]  50 Kumar S, Wesnousky S G, Rockwell T K, et al. Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India. Science, 2001, 294:2328-2331
[45]  51 Kumar S, Wesnousky S G, Rockwell T K, et al. Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys Res, 2006, 111:B03304
[46]  52 Lavé J, Yule D, Sapkota S, et al. Evidence for a great medieval earthquake (approximate to 1100 AD) in the Central Himalayas, Nepal. Science, 2005, 307:1302-1305
[47]  53 Kondo H, Nakata T, Akhtar S S, et al. Long recurrence interval of faulting beyond the 2005 Kashmir earthquake around the northwestern margin of the Indo-Asian collision zone. Geology, 2008, 36:731-734
[48]  54 Pandey M R, Molnar P. The distribution of intensity of the Bihar-Nepal earthquake of 15 January 1934 and bounds on the extent of the rupture zone. J Nepal Geol Soc, 1988, 5:23-45
[49]  55 Chander R. Southern limits of major earthquake ruptures along the Himalaya between longitudes 75° and 90°E. Tectonophysics, 1989, 170:115-123
[50]  56 Ambraseys N, Bilham R. A note on the Kangra earthquake of 4 April 1905. Curr Sci, 2000, 79:46-50
[51]  57 Ambraseys N, Jackson D. A note on early earthquakes in northern India and southern Tibet. Curr Sci, 2003, 84:571-582
[52]  58 Ambraseys N, Douglas J. Magnitude calibration of north Indian earthquakes. Geophys J Int, 2004, 159:165-206
[53]  59 Bilham R. Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquakes. Curr Sci, 1995, 69:101-128
[54]  60 Bilham R. Earthquakes in India and the Himalaya:Tectonics, geodesy and history. Ann Geophys, 2004, 47:839-858
[55]  61 Bilham R, Gaur V K, Molnar P. Himalayan seismic hazard. Science, 2001, 293:1442-1444
[56]  62 Bilham R, Ambraseys N. Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500-2000. Curr Sci, 2005, 88:1658-1663
[57]  63 Wallace K, Bilham R. Surface deformation in the region of the 1905 Kangra Mw=7.8 earthquake in the period 1846-2001. Geophys Res Lett, 2005, 32:L15307
[58]  64 Martin S, Szeliga W. A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bull Seismol Soc Amer, 2010, 100:562-569
[59]  65 Szeliga W, Hough S, Martin S, et al. Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull Seismol Soc Amer, 2010, 100:570-584
[60]  66 Avouac J P. Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Adv Geophys, 2003, 46:1-80
[61]  67 Chen W P, Molnar P. Seismic moments of major earthquakes and the average rate of slip in Central Asia. J Geophys Res, 1977, 82:2945-2969
[62]  68 Molnar P, Deng Q. Faulting associated with large earthquakes and the average rate of deformation in Central and Eastern Asia. J Geophys Res, 1984, 89:6203-6227
[63]  69 Bilham R, Blume F, Bendick R, et al. Geodetic constraints on the translation and deformation of India:Implications for future great Himalayan earthquakes. Curr Sci, 1998, 77:213-229
[64]  70 Sapkota S, Bollinger L, Klinger L, et al. Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci, 2012, 6:71-76
[65]  71 Kumar S, Wesnousky S G, Jayangondaperumal R, et al. Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India:Timing, size, and spatial extent of great earthquakes. J Geophys Res, 2010, 115:B12422
[66]  72 Oldham T. Catalog of Indian Earthquakes. Memoir Geol Surv India, 1883, 19:163-215
[67]  73 Molnar P. Inversion profiles of uplift rates for the geometry of dip-slip fault at depth, with examples from the Alps and the Himalaya. Ann Geophys, 1987, 5:663-670
[68]  74 Duda S J. Secular seismic energy release in the circum-Pacific belt. Tectonophysics, 1965, 2:409-452
[69]  75 Abe K, Noguchi S. Revision of magnitudes of large shallow earthquakes, 1897-1912. Phys Earth Planet Inter, 1983, 33:1-11
[70]  76 Molnar P. A review of the seismicity and the rates of active underthrusting and deformation at the Himalaya. J Himalayan Geol, 1990, 1:131-154
[71]  77 Ben-Menahem A, Aboudi E, Schild R. The source of the great Assam earthquake:An intraplate wedge motion. Phys Earth Planet Inter, 1974, 6:109-131
[72]  78 Rana B J B. Nepalako mahabhukampa (1990 sala) Nepal's Great Earthquake. Katmandu:Nepal Ko Maha Bhukampa Jorganesh Press, 1935
[73]  79 Pant M R. A step toward a historical seismicity of Nepal. Adarsa, 2002, 2:29-60
[74]  80 Avouac J P. Mountain building:From earthquakes to geological deformation. Dynamic processes in extensional and compressional settings. Treatise Geophys, 2007, 6:377-439
[75]  81 Pandey M, Tandukar R, Avouac J, et al. Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys Res Lett, 1995, 22:751-754
[76]  82 Bettinelli P, Avouac J, Flouzat M, et al. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J Geodesy, 2006, 80:567-589
[77]  83 Jackson M, Bilham R. Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. J Geophys Res, 1994, 99:13897-13912
[78]  84 Bollinger L, Avouac J, Cattin R, et al. Stress buildup in the Himalaya. J Geophys Res, 2004, 109:B11405
[79]  85 Bollinger L, Perrier F, Avouac J P, et al. Seasonal modulation of seismicity in the Himalaya of Nepal. Geophys Res Lett, 2007, 34:L08304
[80]  86 Cattin R, Avouac J P. Modeling of mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res, 2000, 105:13389-13407
[81]  87 Dahlen F, Suppe J. Mechanics, growth, and erosion of mountain belts. Geol Soc Am Spec Pap, 1988, 218:161-178
[82]  88 Dahlen F. Critical taper model of fold-and-thrust belts and accretionary wedges. Ann Rev Earth Planet Sci, 1990, 18:55-99
[83]  89 Blanpied M L, Lockner D A, Byerlee J D. Frictional slip of granite at hydrothermal conditions. J Geophys Res, 1995, 100:13045-13064
[84]  90 Marone C. Laboratory-derived friction laws and their application to seismic faulting. Ann Rev Earth Planet Sci, 1998, 26:643-696
[85]  91 Nabelek J, Hetenyi G, Vergne J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 2009, 325:1371-1374
[86]  92 Lemonnier C, Marquis G, Perrier F, et al. Electrical structure of the Himalaya of cenral Nepal:High conductivity around the mid-crustal ramp along the MHT. Geophys Res Lett, 1999, 26:3261-3264
[87]  93 Dmowska R, Zheng G, Rice J R. Seismicity and deformation at convergent margins due to heterogeneous coupling. J Geophys Res, 1996, 101:3015-3029
[88]  94 Avouac J P, Ayoub F, Leprince S, et al. The 2005 Mw 7.6 Kashmir earthquake:Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet Sci Lett, 2006, 249:514-528
[89]  95 Kaneda H, Nakata T, Tsutsumi H, et al. Surface rupture of the 2005 Kashmir, Pakistan, earthquake and its active tectonic implications. Bull Seismol Soc Amer, 2008, 98:521-557
[90]  96 Bollinger L, Tapponnier P, Sapkota S. Balance and deficit of seismic slip in central Nepal:Implication for a repeat of the 1344 earthquake in Nepal. J Nepal Geol Soc, 2015, 48:25
[91]  97 Vergne J, Cattin R, Avouac J. On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults. Geophys J Int, 2001, 147:155-162
[92]  98 Liu-Zeng J, Zhang Z, Wen L, et al. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan:East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth Planet Sci Lett, 2009, 286:355-370
[93]  99 Shen Z K, Sun J, Zhang P, et al. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geosci, 2009, doi:10.1038/ngeo636
[94]  1 Powell C M, Conaghan P J. Plate tectonics and the Himalayas. Earth Planet Sci Lett, 1973, 20:1-12
[95]  2 Burg J P, Chen G M. Tectonics and structural zonation of southern Tibet, China. Nature, 1984, 311:219-223
[96]  3 Hodges K V. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Amer Bull, 2000, 112:324-350
[97]  4 Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci, 2000, 28:211-280
[98]  5 Xu Z Q, Yang J S, Li H B, et al. The Qinghai-Tibet Plateau and continental dynamics:A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau (in Chinese). Geol China, 2006, 33:221-238[许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学-地体拼合、碰撞造山以及高原隆升的深部驱动力. 中国地质, 2006, 33:221-
[99]  6 Patriat P, Achache J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 1984, 311:615-621
[100]  100 Zhang P Z, Wen X Z, Shen Z K, et al. Oblique, high-angle, listric-reverse faulting and associated development of strain:The Wenchuan earthquake of May 12, 2008, Sichuan, China. Ann Rev Earth Planet Sci, 2010, 38:353-382
[101]  101 Wang W M, Zhao I F, Li J, et a1. Rupture process of the 8.0 Wenchuan earthquake of Sichuan, China (in Chinese). Chin J Geophys, 2008, 51:1403-1410[王卫民, 赵连锋, 李娟, 等. 四川汶川8.0 级地震震源过程. 地球物理学报, 2008, 51:1403-
[102]  102 Li X, Zhou Z, Huang M, et al. Preliminary Analysis of Strong-Motion Recordings from the Magnitude 8.0 Wenchuan, China, Earthquake of 12 May 2008. Seismol Res Lett, 2008, 79:855-854
[103]  103 Sheng S Z, Wan Y G, Jiang C S, et al. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal Ms8.1 earthquake (in Chinese). Chin J Geophys, 2015, 58:1834-1842[盛书中, 万永革, 蒋长胜, 等. 2015 年尼泊尔Ms8.1 强震对中国大陆静态应力触发影响的初探. 地球物理学报, 2015, 58:1834-
[104]  104 Armijo R, Tapponnier P, Mercier J. Quaternary extension in southern Tibet:Field observations and tectonic implications. J Geophys Res, 1986, 91:13803-13872
[105]  105 Kali E. De la déformation long-terme à court-terme sur les failles normales du Sud-Tibet:Approche géochronologique multi-méthode (10Be, 26Al, (U-Th)/He, 40Ar/39Ar, U/Pb) (in French). Doctor Dissertation. Strasbourg:Université de Strasbourg, 2010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133