全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

硅的新型亚稳金属性同素异形体

DOI: 10.1360/N972015-00200, PP. 2616-2620

Keywords: 亚稳,金属硅化物,金属性,低密度硅,5配位

Full-Text   Cite this paper   Add to My Lib

Abstract:

从理论上提出了硅的一种新型金属性亚稳相,并通过弹性常数和声子谱的计算验证了该结构在常压下的稳定性.该结构可以通过以α-LaSi5为前驱物,将其中的La原子去除获得.该结构中隧道型空隙的存在使其密度低于金刚石型结构的Si-I相.在这种结构中,有40%的硅原子为5配位,其他硅原子为4配位.电子结构的计算表明该结构具有金属导电性.导电性主要由于5配位原子的存在导致价电子出现离域性.配位数的改变也使得硅原子之间发生了一定的电荷转移,出现离子性.该结构的化学键中同时存在共价性、金属性和离子性.

References

[1]  1 Jamieson J C. Crystal structures at high pressures of metallic modifications of silicon and germanium. Science, 1963, 139:762-764
[2]  2 McMahon M, Nelmes R. New high-pressure phase of Si. Phys Rev B, 1993, 47:8337-8340
[3]  3 Olijnyk H, Sikka S K, Holzapfel W B. Structural phase transitions in Si and Ge under pressures up to 50 GPa. Phys Lett A, 1984, 103:137-140
[4]  4 Hanfland M, Schwarz U, Syassen K, et al. Crystal structure of the high-pressure phase silicon VI. Phys Rev Lett, 1999, 82:1197-1200
[5]  5 Duclos S, Vohra Y, Ruoff A. hcp to fcc transition in silicon at 78 GPa and studies to 100 GPa. Phys Rev Lett, 1987, 58:775-777
[6]  6 Wang J T, Chen C, Mizuseki H, et al. Kinetic origin of divergent decompression pathways in silicon and germanium. Phys Rev Lett, 2013, 110:165503
[7]  7 Wentorf R H, Kasper J S. Two new forms of silicon. Science, 1963, 139:338-339
[8]  8 Crain J, Ackland G, Maclean J, et al. Reversible pressure-induced structural transitions between metastable phases of silicon. Phys Rev B, 1994, 50:13043-13046
[9]  9 Zwijnenburg M A, Jelfs K E, Bromley S T. An extensive theoretical survey of low-density allotropy in silicon. Phys Chem Chem Phys, 2010, 12:8505
[10]  10 Botti S, Flores-Livas J, Amsler M, et al. Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications. Phys Rev B, 2012, 86:121204
[11]  11 Zhao Z, Tian F, Dong X, et al. Tetragonal allotrope of group 14 elements. J Am Chem Soc, 2012, 134:12362-12365
[12]  12 Zhao H Y, Wang J, Ma Q M, et al. sp3-Bonded silicon allotropes based on the Kelvin problem. Phys Chem Chem Phys, 2013, 15:17619-17625
[13]  13 Malone B D, Cohen M L. Prediction of a metastable phase of silicon in the Ibam structure. Phys Rev B, 2012, 85:024116
[14]  14 Xiang H J, Huang B, Kan E, et al. Towards direct-gap silicon phases by the inverse band structure design approach. Phys Rev Lett, 2013, 110:118702
[15]  15 Wang Q, Xu B, Sun J, et al. Direct band gap silicon allotropes. J Am Chem Soc, 2014, 136:9826-9829
[16]  16 Zhao Y X, Buehler F, Sites J R, et al. New metastable phases of silicon. Solid State Commun, 1986, 59:679-682
[17]  17 Ge D, Domnich V, Gogotsi Y. Thermal stability of metastable silicon phases produced by nanoindentation. J Appl Phys, 2004, 95:2725-2731
[18]  18 Ruffell S, Haberl B, Koenig S, et al. Annealing of nanoindentation-induced high pressure crystalline phases created in crystalline and amorphous silicon. J Appl Phys, 2009, 105:093513
[19]  19 Gryko J, McMillan P F, Marzke R F, et al. Low-density framework form of crystalline silicon with a wide optical band gap. Phys Rev B, 2000, 62:R7707-R7710
[20]  20 Ammar A, Cros C, Pouchard M, et al. On the clathrate form of elemental silicon, Si136:Preparation and characterisation of NaxSi136 (x→0). Solid State Sci, 2004, 6:393-400
[21]  21 Kurakevych O O, Strobel T A, Kim D Y, et al. Na-Si Clathrates are high-pressure phases:A melt-based route to control stoichiometry and properties. Cryst Growth Des, 2013, 13:303-307
[22]  22 Kim D Y, Stefanoski S, Kurakevych O O, et al. Synthesis of an open-framework allotrope of silicon. Nat Mater, 2015, 14:169-173
[23]  23 Wang Y, Lü J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization. Phys Rev B, 2010, 82:094116
[24]  24 Wang Y, Lü J, Zhu L, et al. CALYPSO:A method for crystal structure prediction. Comput Phys Commun, 2012, 183:2063-2070
[25]  25 Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP. Z Kristallogr, 2005, 220:567-570
[26]  26 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77:3865-3868
[27]  27 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13:5188-5192
[28]  28 Parlinski K, Li Z Q, Kawazoe Y. First-principles determination of the soft mode in cubic ZrO2. Phys Rev Lett, 1997, 78:4063-4066
[29]  29 Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B, 2008, 78:134106
[30]  30 Kasper J S, Hagenmuller P, Pouchard M, et al. Clathrate structure of silicon Na8Si46 and NaxSi136 (x<11). Science, 1965, 150:1713-1714
[31]  31 Yamanaka S. Silicon clathrates and carbon analogs:High pressure synthesis, structure, and superconductivity. Dalton Trans, 2010, 39:1901-1915
[32]  32 Von Schnering H G, Schwarz M, Nesper R. The lithium sodium silicide Li3NaSi6 and the formation of allo-silicon. J Less Common Metals, 1988, 137:297-310
[33]  33 Yamanaka S, Izumi S, Maekawa S, et al. Phase diagram of the La-Si binary system under high pressure and the structures of superconducting LaSi5 and LaSi10. J Solid State Chem, 2009, 182:1991-2003
[34]  34 Wu Z J, Zhao E J, Xiang H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B, 2007, 76:054115
[35]  35 Tse J S, Klug D D, Patchkovskii S, et al. Chemical bonding, electron-phonon coupling, and structural transformations in high-pressure phases of Si. J Phys Chem B, 2006, 110:3721-3726

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133