全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

CALYPSO结构预测方法

DOI: 10.1360/N972015-00575, PP. 2580-2587

Keywords: 卡里普索,结构预测,群智算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

凝聚态物质内部的原子排列方式,即结构,是深入理解其宏观物理和化学性质的重要信息.只根据物质的化学组分从理论上开展物质的结构预测是物理、化学和材料科学长期的期盼,但一直是个巨大挑战.基于结构对称性的分类检索思想,结合粒子群多目标优化算法,引入成键特征矩阵的结构表征方法,提出并发展了卡里普索(CALYPSO)结构预测方法,并在此基础上开发了拥有自主知识产权的同名结构预测软件包.该方法和软件只需给定材料的化学组分和外界条件(如压力),就可以预测材料的基态及亚稳态结构,并可以进行功能材料逆向设计.CALYPSO方法的高效可靠性已经在科研实践中得到了证实.目前该方法已经被广泛应用到三维晶体、二维层状材料和表面、零维的团簇等体系的结构研究领域,成为理论确定材料结构的有效手段.

References

[1]  1 Oganov A R. Modern Methods of Crystal Structure Prediction. Weinheim:John Wiley & Sons, 2011
[2]  2 Stillinger F H. Exponential multiplicity of inherent structures. Phys Rev E, 1999, 59:48-51
[3]  3 Maddox J. Crystals from first principles. Nature, 1988, 335:6187
[4]  4 Wang Y, Ma Y. Perspective:Crystal structure prediction at high pressures. J Chem Phys, 2014, 140:040901
[5]  5 Wales D J, Doye J P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A, 1997, 101:5111-5116
[6]  6 Goedecker S. Minima hopping:An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J Chem Phys, 2004, 120:9911-9917
[7]  7 Aarts E, Korst J. Simulated Annealing and Boltzmann Machines. New York:John Wiley & Sons, 1988
[8]  8 Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA, 2002, 99:12562-12566
[9]  9 Motherwell W S, Ammon H L, Dunitz J D, et al. Crystal structure prediction of small organic molecules:A second blind test. Acta Crystallogr B, 2002, 58:647-661
[10]  10 Pickard C J, Needs R. Ab initio random structure searching. J Phys:Condens Mat, 2011, 23:053201
[11]  11 Scheraga H A. Recent developments in the theory of protein folding:Searching for the global energy minimum. Biophys Chem, 1996, 59:329-339
[12]  12 Goldberg D E, Holland J H. Genetic algorithms and machine learning. Mach Learn, 1988, 3:95-99
[13]  13 Woodley S M, Catlow R. Crystal structure prediction from first principles. Nat Mater, 2008, 7:937-946
[14]  14 Call S T, Zubarev D Y, Boldyrev A I. Global minimum structure searches via particle swarm optimization. J Comput Chem, 2007, 28:1177-1186
[15]  15 Wang Y, Lü J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization. Phys Rev B, 2010, 82:094116
[16]  16 Amsler M, Goedecker S. Crystal structure prediction using the minima hopping method. J Chem Phys, 2010, 133:224104
[17]  17 Pickard C J, Needs R. High-pressure phases of silane. Phys Rev Lett, 2006, 97:045504
[18]  18 Pickard C J, Needs R. Metallization of aluminum hydride at high pressures:A first-principles study. Phys Rev B, 2007, 76:144114
[19]  19 Pickard C J, Needs R J. Structure of phase III of solid hydrogen. Nat Phys, 2007, 3:473-476
[20]  20 Shang C, Liu Z. Stochastic surface walking method for structure prediction and pathway searching. J Chem Theory Comput, 2013, 9:1838-1845
[21]  21 Shang C, Zhang X, Liu Z. Stochastic surface walking method for crystal structure and phase transition pathway prediction. Phys Chem Chem Phys 2014, 16:17845-17856
[22]  22 Zhang X, Shang C, Liu Z. From atoms to fullerene:Stochastic surface walking solution for automated structure prediction of complex material. J Chem Theory Comput, 2013, 9:3252-3260
[23]  23 Hartke B. Global geometry optimization of clusters using genetic algorithms. J Phys Chem, 1993, 97:9973-9976
[24]  24 Deaven D, Ho K. Molecular geometry optimization with a genetic algorithm. Phys Rev Lett, 1995, 75:288-291
[25]  25 Woodley S, Battle P, Gale J, et al. The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Phys Chem Chem Phys, 1999, 1:2535-2542
[26]  26 Abraham N, Probert M. A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction. Phys Rev B, 2006, 73:224104
[27]  27 Glass C W, Oganov A R, Hansen N. USPEX-Evolutionary crystal structure prediction. Comput Phys Commun, 2006, 175:713-720
[28]  28 Lonie D C, Zurek E. XtalOpt:An open-source evolutionary algorithm for crystal structure prediction. Comput Phys Commun, 2011, 182:372-387
[29]  29 Kolmogorov A, Shah S, Margine E, et al. New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. Phys Rev Lett, 2010, 105:217003
[30]  30 Trimarchi G, Zunger A. Global space-group optimization problem:Finding the stablest crystal structure without constraints. Phys Rev B, 2007, 75:104113
[31]  31 Bahmann S, Kortus J. EVO-Evolutionary algorithm for crystal structure prediction. Comput Phys Commun, 2013, 184:1618-1625
[32]  32 Bi W, Meng Y, Kumar R, et al. Pressure-induced structural transitions in europium to 92 GPa. Phys Rev B, 2011, 83:104106
[33]  33 Ma Y, Eremets M, Oganov A R, et al. Transparent dense sodium. Nature, 2009, 458:182-185
[34]  34 Oganov A R, Chen J, Gatti C, et al. Ionic high-pressure form of elemental boron. Nature, 2009, 457:863-867
[35]  35 Zhang Y, Gao W, Chen S, et al. Inverse design of materials by multi-objective differential evolution. Comp Mater Sci, 2015, 98:51-55
[36]  36 Zhang Y, Li Z, Xiang H, et al. Inverse design of materials by multi-objective differential evolution (IM2ODE). APS March Meeting 2014. 2014
[37]  37 Chen H, Zhang Y, Gong X, et al. Predicting New TiO2 phases with low band gaps by a multiobjective global optimization approach. J Phys Chem C, 2014, 118:2333-2337
[38]  38 Wang Y, Lü J, Zhu L, et al. CALYPSO:A method for crystal structure prediction. Comput Phys Commun, 2012, 183:2063-2070
[39]  39 Lu S, Wang Y, Liu H, et al. Self-assembled ultrathin nanotubes on diamond (100) surface. Nat Commun, 2014, 5:3666
[40]  40 Luo X, Yang J, Liu H, et al. Predicting two-dimensional boron-carbon compounds by the global optimization method. J Am Chem Soc, 2011, 133:16285-16290
[41]  41 Lü J, Wang Y, Zhu L, et al. Particle-swarm structure prediction on clusters. J Chem Phys, 2012, 137:084104
[42]  42 Wang Y, Miao M, Lü J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys, 2012, 137:224108
[43]  43 Zhang X, Wang Y, Lü J, et al. First-principles structural design of superhard materials. J Chem Phys, 2013, 138:114101
[44]  44 Steinhardt P J, Nelson D R, Ronchetti M. Bond-orientational order in liquids and glasses. Phys Rev B, 1983, 28:784-805
[45]  45 Wang Y, Lü J, Zhu L, et al. Materials discovery via CALYPSO methodology. J Phys:Condens Matter, 2015, 27:203203
[46]  46 Zhao Z, Tian F, Dong X, et al. Tetragonal allotrope of group 14 elements. J Am Chem Soc, 2012, 134:12362-12365
[47]  47 Li Q, Zhou D, Zheng W, et al. Global structural optimization of tungsten borides. Phys Rev Lett, 2013, 110:136403
[48]  48 Gao G, Bergara A, Liu G, et al. Pressure induced phase transitions in TiH2. J App Phys, 2013, 113:103512
[49]  49 Lü J, Wang Y, Zhu L, et al. Predicted novel high-pressure phases of lithium. Phys Rev Lett, 2011, 106:015503
[50]  50 Guillaume C L, Gregoryanz E, Degtyareva O, et al. Cold melting and solid structures of dense lithium. Nat Phys, 2011, 7:211-214
[51]  51 Zhu L, Wang H, Wang Y, et al. Substitutional alloy of Bi and Te at high pressure. Phys Rev Lett, 2011, 106:145501
[52]  52 Nishio-Hamane D, Zhang M, Yagi T, et al. High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure. Am Mineral, 2012, 97:568-572
[53]  53 Chen Y, Xi X, Yim W L, et al. High-pressure phase transitions and structures of topological insulator BiTeI. J Phys Chem C, 2013, 117:25677-25683
[54]  54 Zhou D, Li Q, Ma Y, et al. Unraveling convoluted structural transitions in SnTe at high pressure. J Phys Chem C, 2013, 117:5352-5357

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133