1 Oganov A R. Modern Methods of Crystal Structure Prediction. Weinheim:John Wiley & Sons, 2011
[2]
2 Stillinger F H. Exponential multiplicity of inherent structures. Phys Rev E, 1999, 59:48-51
[3]
3 Maddox J. Crystals from first principles. Nature, 1988, 335:6187
[4]
4 Wang Y, Ma Y. Perspective:Crystal structure prediction at high pressures. J Chem Phys, 2014, 140:040901
[5]
5 Wales D J, Doye J P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A, 1997, 101:5111-5116
[6]
6 Goedecker S. Minima hopping:An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J Chem Phys, 2004, 120:9911-9917
[7]
7 Aarts E, Korst J. Simulated Annealing and Boltzmann Machines. New York:John Wiley & Sons, 1988
[8]
8 Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA, 2002, 99:12562-12566
[9]
9 Motherwell W S, Ammon H L, Dunitz J D, et al. Crystal structure prediction of small organic molecules:A second blind test. Acta Crystallogr B, 2002, 58:647-661
[10]
10 Pickard C J, Needs R. Ab initio random structure searching. J Phys:Condens Mat, 2011, 23:053201
[11]
11 Scheraga H A. Recent developments in the theory of protein folding:Searching for the global energy minimum. Biophys Chem, 1996, 59:329-339
[12]
12 Goldberg D E, Holland J H. Genetic algorithms and machine learning. Mach Learn, 1988, 3:95-99
[13]
13 Woodley S M, Catlow R. Crystal structure prediction from first principles. Nat Mater, 2008, 7:937-946
[14]
14 Call S T, Zubarev D Y, Boldyrev A I. Global minimum structure searches via particle swarm optimization. J Comput Chem, 2007, 28:1177-1186
[15]
15 Wang Y, Lü J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization. Phys Rev B, 2010, 82:094116
[16]
16 Amsler M, Goedecker S. Crystal structure prediction using the minima hopping method. J Chem Phys, 2010, 133:224104
[17]
17 Pickard C J, Needs R. High-pressure phases of silane. Phys Rev Lett, 2006, 97:045504
[18]
18 Pickard C J, Needs R. Metallization of aluminum hydride at high pressures:A first-principles study. Phys Rev B, 2007, 76:144114
[19]
19 Pickard C J, Needs R J. Structure of phase III of solid hydrogen. Nat Phys, 2007, 3:473-476
[20]
20 Shang C, Liu Z. Stochastic surface walking method for structure prediction and pathway searching. J Chem Theory Comput, 2013, 9:1838-1845
[21]
21 Shang C, Zhang X, Liu Z. Stochastic surface walking method for crystal structure and phase transition pathway prediction. Phys Chem Chem Phys 2014, 16:17845-17856
[22]
22 Zhang X, Shang C, Liu Z. From atoms to fullerene:Stochastic surface walking solution for automated structure prediction of complex material. J Chem Theory Comput, 2013, 9:3252-3260
[23]
23 Hartke B. Global geometry optimization of clusters using genetic algorithms. J Phys Chem, 1993, 97:9973-9976
[24]
24 Deaven D, Ho K. Molecular geometry optimization with a genetic algorithm. Phys Rev Lett, 1995, 75:288-291
[25]
25 Woodley S, Battle P, Gale J, et al. The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Phys Chem Chem Phys, 1999, 1:2535-2542
[26]
26 Abraham N, Probert M. A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction. Phys Rev B, 2006, 73:224104
[27]
27 Glass C W, Oganov A R, Hansen N. USPEX-Evolutionary crystal structure prediction. Comput Phys Commun, 2006, 175:713-720
[28]
28 Lonie D C, Zurek E. XtalOpt:An open-source evolutionary algorithm for crystal structure prediction. Comput Phys Commun, 2011, 182:372-387
[29]
29 Kolmogorov A, Shah S, Margine E, et al. New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. Phys Rev Lett, 2010, 105:217003
[30]
30 Trimarchi G, Zunger A. Global space-group optimization problem:Finding the stablest crystal structure without constraints. Phys Rev B, 2007, 75:104113
[31]
31 Bahmann S, Kortus J. EVO-Evolutionary algorithm for crystal structure prediction. Comput Phys Commun, 2013, 184:1618-1625
[32]
32 Bi W, Meng Y, Kumar R, et al. Pressure-induced structural transitions in europium to 92 GPa. Phys Rev B, 2011, 83:104106
[33]
33 Ma Y, Eremets M, Oganov A R, et al. Transparent dense sodium. Nature, 2009, 458:182-185
[34]
34 Oganov A R, Chen J, Gatti C, et al. Ionic high-pressure form of elemental boron. Nature, 2009, 457:863-867
[35]
35 Zhang Y, Gao W, Chen S, et al. Inverse design of materials by multi-objective differential evolution. Comp Mater Sci, 2015, 98:51-55
[36]
36 Zhang Y, Li Z, Xiang H, et al. Inverse design of materials by multi-objective differential evolution (IM2ODE). APS March Meeting 2014. 2014
[37]
37 Chen H, Zhang Y, Gong X, et al. Predicting New TiO2 phases with low band gaps by a multiobjective global optimization approach. J Phys Chem C, 2014, 118:2333-2337
[38]
38 Wang Y, Lü J, Zhu L, et al. CALYPSO:A method for crystal structure prediction. Comput Phys Commun, 2012, 183:2063-2070
[39]
39 Lu S, Wang Y, Liu H, et al. Self-assembled ultrathin nanotubes on diamond (100) surface. Nat Commun, 2014, 5:3666
[40]
40 Luo X, Yang J, Liu H, et al. Predicting two-dimensional boron-carbon compounds by the global optimization method. J Am Chem Soc, 2011, 133:16285-16290
[41]
41 Lü J, Wang Y, Zhu L, et al. Particle-swarm structure prediction on clusters. J Chem Phys, 2012, 137:084104
[42]
42 Wang Y, Miao M, Lü J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys, 2012, 137:224108
[43]
43 Zhang X, Wang Y, Lü J, et al. First-principles structural design of superhard materials. J Chem Phys, 2013, 138:114101
[44]
44 Steinhardt P J, Nelson D R, Ronchetti M. Bond-orientational order in liquids and glasses. Phys Rev B, 1983, 28:784-805
[45]
45 Wang Y, Lü J, Zhu L, et al. Materials discovery via CALYPSO methodology. J Phys:Condens Matter, 2015, 27:203203
[46]
46 Zhao Z, Tian F, Dong X, et al. Tetragonal allotrope of group 14 elements. J Am Chem Soc, 2012, 134:12362-12365
[47]
47 Li Q, Zhou D, Zheng W, et al. Global structural optimization of tungsten borides. Phys Rev Lett, 2013, 110:136403
[48]
48 Gao G, Bergara A, Liu G, et al. Pressure induced phase transitions in TiH2. J App Phys, 2013, 113:103512
[49]
49 Lü J, Wang Y, Zhu L, et al. Predicted novel high-pressure phases of lithium. Phys Rev Lett, 2011, 106:015503
[50]
50 Guillaume C L, Gregoryanz E, Degtyareva O, et al. Cold melting and solid structures of dense lithium. Nat Phys, 2011, 7:211-214
[51]
51 Zhu L, Wang H, Wang Y, et al. Substitutional alloy of Bi and Te at high pressure. Phys Rev Lett, 2011, 106:145501
[52]
52 Nishio-Hamane D, Zhang M, Yagi T, et al. High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure. Am Mineral, 2012, 97:568-572
[53]
53 Chen Y, Xi X, Yim W L, et al. High-pressure phase transitions and structures of topological insulator BiTeI. J Phys Chem C, 2013, 117:25677-25683
[54]
54 Zhou D, Li Q, Ma Y, et al. Unraveling convoluted structural transitions in SnTe at high pressure. J Phys Chem C, 2013, 117:5352-5357