1 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306:666-669
[2]
2 Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007, 6:652-655
[3]
3 Jin C, Lin F, Suenaga K, et al. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett, 2009, 102:195505
[4]
4 Berseneva N, Gulans A, Krasheninnikov A V, et al. Electronic structure of boron nitride sheets doped with carbon from first-principles calculations. Phys Rev B, 2013, 87:035404
[5]
5 Li L, Yu Y, Ye G, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9:372-377
[6]
6 Liu H, Neal A T, Zhu Z, et al. Phosphorene:An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8:4033-4041
[7]
7 Xu K, Chen P, Li X, et al. Ultrathin nanosheets of vanadium diselenide:A metallic two-dimensional material with ferromagnetic charge-density-wave behavior. Angew Chem Int Ed, 2013, 52:10477-10481
[8]
8 Freeman C L, Claeyssens F, Allan N L, et al. Graphitic nanofilms as precursors to wurtzite films:Theory. Phys Rev Lett, 2006, 96:066102
[9]
9 Min Y, Moon G D, Kim B S, et al. Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J Am Chem Soc, 2012, 134:2872-2875
[10]
10 Kim D, Sun D, Lu W, et al. Toward the growth of an aligned single-layer MoS2 film. Langmuir, 2011, 27:11650-11653
[11]
11 Xu X, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys, 2014, 10:343-350
[12]
12 Lalmi B, Oughaddou H, Enriquez H, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett, 2010, 97:223109
[13]
13 Song C L, Wang Y L, Cheng P, et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science, 2011, 332:1410-1413
[14]
14 Duan H, Yan N, Yu R, et al. Ultrathin rhodium nanosheets. Nat Commun, 2014, 5:3093
[15]
15 Algara-Siller G, Severin N, Chong S Y, et al. Triazine-based graphitic carbon nitride:A two-dimensional semiconductor. Angew Chem, 2014, 126:7580-7585
[16]
16 Goettmann F, Fischer A, Antonietti M, et al. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew Chem Int Ed, 2006, 45:4467-4471
[17]
17 Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8:76-80
[18]
18 Lee J S, Wang X, Luo H, et al. Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids. Adv Mater, 2010, 22:1004-1007
[19]
19 Du A, Sanvito S, Smith S C. First-principles prediction of metal-free magnetism and intrinsic half-metallicity in graphitic carbon nitride. Phys Rev Lett, 2012, 108:197207
[20]
20 Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films. Chem Commun, 2010, 46:3256-3258
[21]
21 Bieri M, Treier M, Cai J, et al. Porous graphenes:Two-dimensional polymer synthesis with atomic precision. Chem Commun, 2009:6919-6921
[22]
22 Koenig S P, Wang L, Pellegrino J, et al. Selective molecular sieving through porous graphene. Nat Nanotechnol, 2012, 7:728-732
[23]
23 Koski K J, Cui Y. The new skinny in two-dimensional nanomaterials. ACS Nano, 2013, 7:3739-3743
[24]
24 Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113:3766-3798
[25]
25 Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7:2898-2926
[26]
26 Miró P, Audiffred M, Heine T. An atlas of two-dimensional materials. Chem Soc Rev, 2014, 43:6537-6554
[27]
27 Wu X, Pei Y, Zeng X C. B2C graphene, nanotubes, and nanoribbons. Nano Lett, 2009, 9:1577-1582
[28]
28 Li Y, Li F, Zhou Z, et al. SiC2 silagraphene and its one-dimensional derivatives:Where planar tetracoordinate silicon happens. J Am Chem Soc, 2011, 133:900-908
[29]
29 Zhang Z, Liu X, Yakobson B I, et al. Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J Am Chem Soc, 2012, 134:19326-19329
[30]
30 Zhuang H L, Singh A K, Hennig R G. Computational discovery of single-layer III-V materials. Phys Rev B, 2013, 87:165415
[31]
31 Tong C J, Zhang H, Zhang Y N, et al. New manifold two-dimensional single-layer structures of zinc-blende compounds. J Mater Chem A, 2014, 2:17971-17978
[32]
32 Enyashin A N, Ivanovskii A L. Graphene allotropes. Phys Status Solidi B, 2011, 248:1879-1883
[33]
33 Lu H, Li S D. Two-dimensional carbon allotropes from graphene to graphyne. J Mater Chem C, 2013, 1:3677-3680
[34]
34 Yin W J, Xie Y E, Liu L M, et al. R-graphyne:A new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons. J Mater Chem A, 2013, 1:5341-5346
[35]
35 Hu M, Shu Y, Cui L, et al. Theoretical two-atom thick semiconducting carbon sheet. Phys Chem Chem Phys, 2014, 16:18118-18123
[36]
36 Sharma B R, Manjanath A, Singh A K. Pentahexoctite:A new two-dimensional allotrope of carbon. Sci Rep, 2014, 4:7164
[37]
37 Xu L C, Wang R Z, Miao M S, et al. Two dimensional Dirac carbon allotropes from graphene. Nanoscale, 2014, 6:1113-1118
[38]
38 Zhang S, Zhou J, Wang Q, et al. Penta-graphene:A new carbon allotrope. Proc Natl Acad Sci USA, 2015, 112, 8:2372-2377
[39]
39 Guan J, Zhu Z, Tománek D. Phase coexistence and metal-insulator transition in few-layer phosphorene:A computational study. Phys Rev Lett, 2014, 113:046804
41 Wu M, Fu H, Zhou L, et al. Nine new phosphorene polymorphs with non-honeycomb structures:A much extended family. Nano Lett, 2015, 15:3557-3562
[42]
42 Wang X, Zeng Z, Ahn H, et al. First-Principles study on the enhancement of lithium storage capacity in boron doped graphene. Appl Phys Lett, 2009, 95:183103
[43]
43 Hwang H J, Koo J, Park M, et al. Multilayer graphynes for lithium ion battery anode. J Phys Chem C, 2013, 117:6919-6923
[44]
44 Du A, Zhu Z, Smith S C. Multifunctional porous graphene for nanoelectronics and hydrogen storage:New properties revealed by first principle calculations. J Am Chem Soc, 2010, 132:2876-2877
[45]
45 Srinivasu K, Ghosh S K. Graphyne and graphdiyne:Promising materials for nanoelectronics and energy storage applications. J Phys Chem C, 2012, 116:5951-5956
[46]
46 Wu M, Wang Q, Sun Q, et al. Functionalized graphitic carbon nitride for efficient energy storage. J Phys Chem C, 2013, 117:6055-6059
[47]
47 Li X, Zhao J, Yang J. Semihydrogenated BN sheet:A promising visible-light driven photocatalyst for water splitting. Sci Rep, 2013, 3:1858
[48]
48 Li X, Li Z, Yang J. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Phys Rev Lett, 2014, 112:018301
[49]
49 Li X, Wang Q. Tunable ferromagnetism in assembled two dimensional triangular graphene nanoflakes. Phys Chem Chem Phys, 2012, 14:2065-2069
[50]
50 Zhou J, Wang Q, Sun Q, et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett, 2009, 9:3867-3870
[51]
51 Li X, Zhang S, Wang Q. Stability and physical properties of a tri-ring based porous g-C4N3 sheet. Phys Chem Chem Phys, 2013, 15:7142-7146
[52]
52 Zhang X, Zhao M, Wang A, et al. Spin-polarization and ferromagnetism of graphitic carbon nitride materials. J Mater Chem C, 2013, 1:6265-6270
[53]
53 Zhang X, Wang A, Zhao M. Spin-gapless semiconducting graphitic carbon nitrides:A theoretical design from first principles. Carbon, 2015, 84:1-8
[54]
54 Kan E, Hu W, Xiao C, et al. Half-metallicity in organic single porous sheets. J Am Chem Soc, 2012, 134:5718-5721
[55]
55 Wang J, Deng S, Liu Z, et al. The rare two-dimensional materials with Dirac cones. Natl Sci Rev, 2015, 2:22-39
[56]
56 Malko D, Neiss C, G?rling A. Two-dimensional materials with Dirac cones:Graphynes containing heteroatoms. Phys Rev B, 2012, 86:045443
[57]
57 Luo X, Liu L M, Hu Z, et al. Two-dimensional superlattice:Modulation of band gaps in graphene-based monolayer carbon superlattices. J Phys Chem Lett, 2012, 3:3373-3378
[58]
58 Dai J, Li Z, Yang J, et al. A first-principles prediction of two-dimensional superconductivity in pristine B2C single layers. Nanoscale, 2012, 4:3032-3035
[59]
59 Wang Z F, Liu Z, Liu F. Organic topological insulators in organometallic lattices. Nat Commun, 2013, 4:1471
[60]
60 Zhao M, Zhang R. Two-dimensional topological insulators with binary honeycomb lattices:SiC3 siligraphene and its analogs. Phys Rev B, 2014, 89:195427
[61]
61 Song Z, Liu C C, Yang J, et al. Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X=H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater, 2014, 6:e147
[62]
62 Kenndy J, Eberhart R. Particle swarm optimization. In:Proceedings of IEEE International Conference on Neural Networks, 1995, 4. 1942-1948
[63]
63 Wang Y, Lü J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization. Phys Rev B, 2010, 82:094116
[64]
64 Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220:671-680
[65]
65 Woodley S M, Battle P D, Gale J D, et al. The prediction of inorganic crystal structures using a genetic algorithm and energy minimization. Phys Chem Chem Phys, 1999, 1:2535-2542
[66]
66 Wales D J, Doye J P K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A, 1997, 101:5111-5116
[67]
67 Martoňák R, Laio A, Parrinello M. Predicting crystal structures:The Parrinello-Rahman method revisited. Phys Rev Lett, 2003, 90:075503
[68]
68 Errea I, Calandra M, Pickard C J, et al. High-Pressure hydrogen sulfide from first principles:A strongly anharmonic phonon-mediated superconductor. Phys Rev Lett, 2015, 114:157004
[69]
69 Mujica A, Needs R J. Theoretical study of the high-pressure phase stability of GaP, InP, and InAs. Phys Rev B, 1997, 55:9659-9670
[70]
70 Glass C W, Oganov A R, Hansen N. USPEX-Evolutionary crystal structure prediction. Comput Phys Commun, 2006, 175:713-720
[71]
71 Zhou X F, Dong X, Oganov A R, et al. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys Rev Lett, 2014, 112:085502
[72]
72 Wang Y, Miao M, Lü J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys, 2012, 137:224108
[73]
73 Luo W, Ma Y, Gong X, et al. Prediction of silicon-based layered structures for optoelectronic applications. J Am Chem Soc, 2014, 136:15992-15997
[74]
74 Wu X, Dai J, Zhao Y, et al. Two-dimensional boron monolayer sheets. ACS Nano, 2012, 6:7443-7453
[75]
75 Yu X, Li L, Xu X W, et al. Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J Phys Chem C, 2012, 116:20075-20079
[76]
76 Luo X, Yang J, Liu H, et al. Predicting two-dimensional boron-carbon compounds by the global optimization method. J Am Chem Soc, 2011, 133:16285-16290
[77]
77 Dai J, Wu X, Yang J, et al. AlxC monolayer sheets:Two-dimensional networks with planar tetracoordinate carbon and potential applications as donor materials in solar cell. J Phys Chem Lett, 2014, 5:2058-2065
[78]
78 Li Y, Liao Y, Schleyer P V R, et al. Al2C monolayer:The planar tetracoordinate carbon global minimum. Nanoscale, 2014, 6:10784-10791
[79]
79 Zhou L J, Zhang Y F, Wu L M. SiC2 siligraphene and nanotubes:Novel donor materials in excitonic solar cells. Nano Lett, 2013, 13:5431-5436
[80]
80 Ding Y, Wang Y. Geometric and electronic structures of two-dimensional SiC3 compound. J Phys Chem C, 2014, 118:4509-4515
[81]
81 Li P, Zhou R, Zeng X C. The search for the most stable structures of silicon-carbon monolayer compounds. Nanoscale, 2014, 6:11685-11691
[82]
82 Li Y, Liao Y, Chen Z. Be2C monolayer with quasi-planar hexacoordinate carbons:A global minimum structure. Angew Chem Int Ed, 2014, 53:7248-7252
[83]
83 Dai J, Zhao Y, Wu X, et al. Exploration of structures of two-dimensional boron-silicon compounds with sp2 silicon. J Phys Chem Lett, 2013, 4:561-567
[84]
84 Tan X, Li F, Chen Z. Metallic BSi3 silicene and its one-dimensional derivatives:Unusual nanomaterials with planar aromatic D6h six-membered silicon rings. J Phys Chem C, 2014, 118:25825-25835
[85]
85 Yang L M, Ba?i? V, Popov I A, et al. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J Am Chem Soc, 2015, 137:2757-2762
[86]
86 Xiang H J, Huang B, Li Z Y, et al. Ordered semiconducting nitrogen-graphene alloys. Phys Rev X, 2012, 2:011003
[87]
87 Zhang S, Li Y, Zhao T, et al. Robust ferromagnetism in monolayer chromium nitride. Sci Rep, 2014, 4:5241
[88]
88 Huang B, Zhuang H L, Yoon M, et al. Highly stable two-dimensional silicon phosphides:Different stoichiometries and exotic electronic properties. Phys Rev B, 2015, 91:121401
[89]
89 Luo W, Xiang H. Room temperature quantum spin Hall insulators with a buckled square lattice. Nano Lett, 2015, 15:3230-3235
[90]
90 Huang B, Deng H X, Lee H, et al. Exceptional optoelectronic properties of hydrogenated bilayer silicene. Phys Rev X, 2014, 4:021029
[91]
91 Osborn T H, Farajian A A, Pupysheva O V, et al. Ab initio simulations of silicene hydrogenation. Chem Phys Lett, 2011, 511:101-105
[92]
92 Tang H, Ismail-Beigi S. Novel precursors for boron nanotubes:The competition of two-center and three-center bonding in boron sheets. Phys Rev Lett, 2007, 99:115501
[93]
93 Tang H, Ismail-Beigi S. First-principles study of boron sheets and nanotubes. Phys Rev B, 2010, 82:115412
[94]
94 Penev E S, Bhowmick S, Sadrzadeh A, et al. Polymorphism of two-dimensional boron. Nano Lett, 2012, 12:2441-2445
[95]
95 Yanagisawa H, Tanaka T, Ishida Y, et al. Phonon dispersion curves of a BC3 honeycomb epitaxial sheet. Phys Rev Lett, 2004, 93:177003
[96]
96 Ding Y, Ni J. Tuning electronic properties of hydro-boron-carbon compounds by hydrogen and boron contents:A first principles study. J Phys Chem C, 2009, 113:18468-18472
[97]
97 Bekaroglu E, Topsakal M, Cahangirov S, et al. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys Rev B, 2010, 81:075433
[98]
98 Liu J, He C Y, Jiao N, et al. Novel two-dimensional SiC2 sheet with full pentagon network. arXiv:1307. 6324[cond-mat. mtrl-sci]
[99]
99 Hu Q K, Wang H Y, Wu Q H, et al. Structural and electronic properties, and pressure-induced phase transition of layered C5N:A first-principles investigation. Chin Phys Lett, 2011, 28, 12:126101
[100]
100 Liu J, Li X B, Zhang H, et al. Electronic structures and optical properties of two-dimensional ScN and YN nanosheets. J Appl Phys, 2014, 115:093504
[101]
101 Zhou J, Sun Q. Magnetism of phthalocyanine-based organometallic single porous sheet. J Am Chem Soc, 2011, 133:15113-15119
[102]
102 Kan M, Zhou J, Sun Q, et al. The intrinsic ferromagnetism in a MnO2 monolayer. J Phys Chem Lett, 2013, 4:3382-3386
[103]
103 Ma Y, Dai Y, Wei W, et al. Novel two-dimensional tetragonal monolayer:Metal-TCNQ networks. J Phys Chem A, 2013, 117:5171-5177
[104]
104 K?nig M, Wiedmann S, Brüne C, et al. Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007, 318:766-770