全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

分子束外延硒化铁薄膜的超导电性

DOI: 10.1360/N972015-00422, PP. 2739-2749

Keywords: 分子束外延,扫描隧道显微镜,硒化铁,配对对称性,高温界面超导

Full-Text   Cite this paper   Add to My Lib

Abstract:

铁基超导体是继铜氧化合物高温超导体之后于2008年被发现的一类新型高温超导材料.在所有铁基超导体中,β-FeSe因具有最简单的化学组分和结构而被认为是探索超导机制的理想体系.借助于半导体工业中成熟的分子束外延生长技术,研究者实现了对FeSe超导薄膜生长、形貌和组分在原子水平上的精确控制,并在此基础上深入研究了其超导性质.最近研究者又把FeSe薄膜的分子束外延生长拓展到SrTiO3(001)衬底,发现单层FeSe/SrTiO3体系的超导转变温度有超过77K的迹象.这些研究成果为解决高温超导体的配对机制以及进一步提高超导转变温度提供了全新的途径和思路,引起高温超导和材料科学等领域的广泛关注.

References

[1]  1 Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1-xFx]FeAs(x=0.05-0.12) with Tc=26 K. J Am Chem Soc, 2008, 130: 3296-3297
[2]  2 Takahashi H, Igawa K, Arii K, et al. Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs. Nature, 2008, 453: 376-378
[3]  3 Ren Z A, Lu W, Yang J, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx]FeAs. Chin Phys Lett, 2008, 25: 2215-2216
[4]  4 Hsu F C, Luo J Y, Keh K W, et al. Superconductivity in the PbO-type structure α-FeSe. Proc Natl Acad Sci USA, 2008, 105: 14262-14264
[5]  5 Medvedev S, Mcqueen T M, Troyan I A, et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat Mater, 2009, 8: 630-633
[6]  6 Yen K W, Huang T W, Huang Y K L, et al. Tellurium substitution effect on the superconductivity of the α-phase iron selenide. EPL, 2008, 84: 37002
[7]  7 Okamoto H. The FeSe (iron selenium) system. J Phase Equilib Diffus, 1991, 12: 383-389
[8]  8 Yoshikazu M, Yoshihiko T. Review of Fe chalcogenide superconductors as the simplest Fe-based superconductor. J Phys Soc Jpn, 2010, 79: 102001
[9]  9 Xue Q K, Hashizume T, Sakurai T. Scanning tunneling microscopy of III-V compound semiconductor (001) surfaces. Prog Surf Sci, 1997, 56: 1-131
[10]  10 Li Y Y, Wang G, Zhu X G, et al. Intrinsic topological insulator Bi2Te3 thin film on Si and their thickness limit. Adv Mater, 2010, 22: 4002-4007
[11]  11 Song C L, Wang Y L, Jiang Y P, et al. Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy. Appl Phys Lett, 2010, 97: 143118
[12]  12 Song C L, Wang Y L, Jiang Y P, et al. Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene. Phys Rev B, 2011, 84: 020503
[13]  13 Song C L, Wang Y L, Cheng P, et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science, 2011, 332: 1410-1413
[14]  14 Kasahara S, Watashige T, Hanaguri T, et al. Field-induced superconducting phase of FeSe in the BCS-BEC crossover. Proc Natl Acad Sci USA, 2014, 111: 16309-16313
[15]  15 Hanaguri T, Niitaka S, Kuroki K, et al. Unconventional s-wave superconductivity in Fe(Se, Te). Science, 2010, 328: 474-476
[16]  16 Hirschfeld P J, Korshunov M M, Mazin I I. Gap symmetry and structure of Fe-based superconductors. Rep Prog Phys, 2011, 74: 124508
[17]  17 Hung H H, Song C L, Chen X, et al. Anisotropic vortex lattice structures in the FeSe superconductor. Phys Rev B, 2012, 85: 104510
[18]  18 Debanjan C, Berg E, Sachdev S. Nematic order in the vicinity of a vortex in superconducting FeSe. Phys Rev B, 2011, 84: 205113
[19]  19 Nakayama K, Miyata Y, Phan G N, et al. Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor. Phys Rev Lett, 2014, 113: 237001
[20]  20 Baek S H, Efremov D V, Ok J M, et al. Orbital-driven nematicity in FeSe. Nat Mater, 2014, 14: 210-214
[21]  21 Song C L, Wang Y L, Jiang Y P, et al. Suppression of superconductivity by twin boundaries in FeSe. Phys Rev Lett, 2012, 109: 137004
[22]  22 Song C L, Wang Y L, Jiang Y P, et al. Imaging the electron-boson coupling in superconducting FeSe films using a scanning tunneling microscope. Phys Rev Lett, 2014, 112: 057002
[23]  23 Okabe H, Takeshita N, Horigane K, et al. Pressure-induced high-Tc superconducting phase in FeSe: Correlation between anion height and Tc. Phys Rev B, 2011, 81: 205119
[24]  24 Wang Q, Shen Y, Pan B, et al. Strong Interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. 2015, arXiv:1502.07544
[25]  25 Lee J, Fujita K, McElroy K, et al. Interplay of electron-lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ. Nature, 2006, 442: 546-550
[26]  26 Wang Z, Yang H, Fang D, et al. Close relationship between superconductivity and the bosonic mode in Ba0.6K0.4Fe2As2 and Na (Fe0.975Co0.025)As. Nat Phys, 2013, 9: 42-48
[27]  27 Balatsky A V, Zhu J X. Local strong-coupling pairing in d-wave superconductors with inhomogeneous bosonic modes. Phys Rev B, 2006, 74: 094517
[28]  28 Ginzburg V L. On surface superconductivity. Phys Lett, 1964, 13: 101-102
[29]  29 Strongin M, Kammerer O F, Crow J E, et al. Enhanced superconductivity in layered metallic films. Phys Rev Lett, 1968, 21: 1320-1323
[30]  30 Bozovic I, Logvenov G, Belca I, et al. Epitaxial strain and superconductivity in La2-xSrxCuO4 thin films. Phys Rev Lett, 2002, 89: 107001
[31]  31 Logvenov G, Gozar A, Bozovic I. High temperature interface superconductivity. J Supercond Nov Magn, 2013, 26: 2863-2865
[32]  32 Reyren N, Thiel S, Caviglia A D, et al. Superconducting interfaces between insulating oxides. Science, 2007, 317: 1196-1199
[33]  33 Zhang T, Cheng P, Li W J, et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nat Phys, 2010, 6: 104-108
[34]  34 Wang Q Y, Li Z, Zhang W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin Phys Lett, 2012, 29: 037402
[35]  35 Li Z, Peng J P, Zhang H M, et al. Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: A scanning tunneling microscopy study. J Phys Condens Matter, 2014, 26: 265002
[36]  36 Zhang W H, Sun Y, Zhang J S, et al. Direct observation of high-temperature superconductivity in one-unit-cell FeSe films. Chin Phys Lett, 2014, 31: 017401
[37]  37 Liu D, Zhang W H, Mou D X, et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat Commun, 2012, 3: 931
[38]  38 He S L, He J F, Zhang W H, et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat Mater, 2013, 12: 605
[39]  39 He J F, Liu X, Zhang W H, et al. Electronic evidence of an insulator-superconductor crossover in single-layer FeSe/SrTiO3 films. Proc Natl Acad Sci USA, 2014, 111: 18501-18506
[40]  40 Liu K, Lu Z Y, Xiang T. Atomic and electronic structures of FeSe monolayer and bilayer thin films on SrTiO3(001): First-principles study. Phys Rev B, 2012, 85: 235123
[41]  41 Tian Y C, Zhang W H, Li F S, et al. Ultrafast dynamics evidence of high temperature superconductivity in single unit cell FeSe on SrTiO3. 2015, arXiv:1502.06339
[42]  42 Sun Y, Zhang W H, Xing Y, et al. High temperature superconducting FeSe films on SrTiO3 substrates. Sci Rep, 2014, 4: 6040
[43]  43 Tan S, Zhang Y, Xia M, et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat Mater, 2013, 12: 634-640
[44]  44 Peng R, Shen X P, Xie X, et al. Measurement of an enhanced superconducting phase and a pronounced anisotropy of the energy gap of a strained FeSe single layer in FeSe/Nb:SrTiO3/KTaO3 heterostructures using photoemission spectroscopy. Phys Rev Lett, 2014, 112: 107001
[45]  45 Peng R, Xu H C, Tan S Y, et al. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering. Nat Commun, 2014, 5: 5044
[46]  46 Liu K, Zhang B J, Lu Z Y. First-principles study of magnetic frustration in FeSe epitaxial films on SrTiO3. Phys Rev B, 2015, 91: 045107
[47]  47 Ge J F, Liu Z L, Liu C, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat Mater, 2014, 14: 285-289
[48]  48 Huang D, Song C L, Webb T A, et al. Revealing the empty-state electronic structure of single-unit-cell FeSe/SrTiO3. 2015, arXiv:1503.04792
[49]  49 Lee J J, Schmitt F T, Moore R G, et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature, 2014, 515: 245-248
[50]  50 Cui Y T, Moore R G, Zhang A M, et al. Interface ferroelectric transition near the gap-opening temperature in a single-unit-cell FeSe film grown on Nb-doped SrTiO3 substrate. Phys Rev Lett, 2015, 114: 037002
[51]  51 Xiang Y Y, Wang F, Wang D, et al. High-temperature superconductivity at the FeSe/SrTiO3 interface. Phys Rev B, 2012, 86: 134508
[52]  52 Coh S, Cohen M L, Louie S G. Structural template increases electron-phonon interaction in an FeSe monolayer. 2014, arXiv:1407.5657
[53]  53 Deng L Z, Lv B, Wu Z, et al. Meissner and mesoscopic superconducting states in 1-4 unit-cell FeSe films. Phys Rev B, 2014, 90: 214513
[54]  54 Bozovic I, Ahn C. A new frontier for superconductivity. Nat Phys, 2014, 10: 892-895
[55]  55 Mazin I I, Singh D J, Johannes M D, et al. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. Phys Rev Lett, 2008, 101: 057003
[56]  56 Kuroki K, Onari S, Arita R, et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. Phys Rev Lett, 2008, 101: 087004
[57]  57 Zhang W H, Li Z, Li F S, et al. Interface charge doping effects on superconductivity of single-unit-cell FeSe films on SrTiO3 substrates. Phys Rev B, 2014, 89: 060506
[58]  58 Fan Q, Zhang W H, Liu X, et al. Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunneling microscopy. 2015, arXiv:1504.02185
[59]  59 Kontani H, Onari S. Orbital-fluctuation-mediated superconductivity in iron pnictides: Analysis of the five-orbital Hubbard-Holstein model. Phys Rev Lett, 2010, 104: 157001
[60]  60 Bang J, Li Z, Sun Y Y, et al. Atomic and electronic structures of single-layer FeSe on SrTiO3(001): The role of oxygen deficiency. Phys Rev B, 2013, 87: 220503

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133