全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

手性物质创造的昨天、今天和明天

DOI: 10.1360/N972015-00551, PP. 2679-2696

Keywords: 不对称催化,手性催化剂,手性物质,手性配体

Full-Text   Cite this paper   Add to My Lib

Abstract:

手性是自然界的普遍特征,并与生命现象密切相关.组成生命的许多基本物质,例如蛋白质、氨基酸和核糖核酸等均是手性化合物.同样,超过一半的药物分子都是手性化合物.因此,如何有效地发现和创造手性物质,如手性药物、手性农药、手性材料等一直是合成化学研究的焦点.经过跨世纪的追求与探索,人类终于发现人工合成的手性催化剂可以像酶一样合成手性物质.通过不懈的努力,化学家发展出了许多高效、高选择性的手性催化剂和不对称合成反应,部分手性催化剂的效率已经超越了生物酶.现在,不论是手性物质创造的多样性还是精准度都已达到了一个新的高度.手性催化剂和不对称合成反应已经在工业上得到了广泛应用,造福人类.本文将以不对称催化反应的发现、发展历程为主线,并结合我国在这一领域的研究进展,简要概述手性物质创造科学发展的昨天、今天和明天.

References

[1]  41 Trost B M, O'Krongly D, Belletire J L. A model for asymmetric induction in the Diels-Alder reaction. J Am Chem Soc, 1980, 102: 7595-7596
[2]  42 Evans D A, Bartroli J, Shih T L. Enantioselective Aldol condensations II. Erythro-selective chiral Aldol condensations via boron enolates. J Am Chem Soc, 1981, 103: 2127-2129
[3]  43 Ding K L, Fan Q H. New progress and prospects in the study of chiral catalysis (in Chinese). Chem Online, 2009, 6: 22-28 [丁奎岭, 范青华. 手性催化研究的新进展与展望. 化学通报, 2009, 6: 22-
[4]  44 Guo H C, Ding K L, Dai L X. Recent advances in catalytic asymmetric hydrogenation: Renaissance of the monodentate phosphorus ligands (in Chinese). Chin Sci Bull (Chin Ver), 2004, 49: 1575-1588 [郭红超, 丁奎岭, 戴立信. 不对称催化氢化的新进展——单齿磷配体的复兴. 科学通报, 2004, 49: 1575-
[5]  45 Bausch C C, Pfaltz A. Phox ligands. In: Zhou Q L, ed. Privileged Chiral Ligands and Catalysts. Weinheim: Wiley, 2011. 221-256
[6]  46 Xie J H, Zhou Q L. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions. Acc Chem Res, 2008, 41: 581-593
[7]  47 Liu X, Lin L, Feng X. Chiral N,N¢-dioxides: New ligands and organocatalysts for catalytic asymmetric reactions. Acc Chem Res, 2011, 44: 574-587
[8]  48 Yoon T P, Jacobsen E N. Privileged chiral catalysts. Science, 2003, 299: 1691-1693
[9]  49 Xie J H, Liu X Y, Xie J B, et al. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones. Angew Chem Int Ed, 2011, 50: 7329-7332
[10]  50 Arai N, Ohkuma T. Design of molecular catalysis for achievement of high turnover number in homogeneous hydrogenation. Chem Rec, 2012, 12: 284-289
[11]  51 Hui Y H, Jiang J, Wang W T, et al. Highly enantioselective conjugate addition of thioglycolate to chalcones catalyzed by lanthanum: Low catalyst loading and remarkable chiral amplification. Angew Chem Int Ed, 2010, 49: 4290-4293
[12]  52 Liu Y L, Shang D J, Zhou X, et al. AgAsF6/Sm(OTf)3 promoted reversal of enantioselectivity for the asymmetric Friedel-Crafts alkylations of indoles with b,g-unsaturated a-ketoesters. Org Lett, 2010, 12: 180-183
[13]  53 Liu Y, Ding K L. Modular monodentate phosphoramidite ligands for rhodium-catalyzed enantioselective hydrogenation. J Am Chem Soc, 2005, 127: 10488-10489
[14]  54 Han Z, Wang Z, Zhang X, et al. Spiro[4,-1,6-nonadiene-based phosphine-oxazoline ligands for iridium-catalyzed enantioselective hydrogenation of ketimines. Angew Chem Int Ed, 2009, 48: 5345-5349
[15]  55 Feng C G, Xu M H, Lin G Q. Development of bicyclo[3.3.octadiene- or dicyclopentadiene-based chiral diene ligands for transition- metal-catalyzed reactions. Synlett, 2011, (10): 1345-1356
[16]  56 Liao S, Sun X L, Tang Y. Side arm strategy for catalyst design: Modifying bisoxazolines for remote control enatioselective and related. Acc Chem Res, 2014, 47: 2260-2272
[17]  57 Dai L X. Chiral metal-organic assemblies-a new approach to immobilizing homogeneous asymmetric catalysts. Angew Chem Int Ed, 2004, 43: 5726-5729
[18]  58 Wang Z, Chen G, Ding K L. Self-supported catalysts. Chem Rev, 2009, 109: 322-359
[19]  59 Wang X, Ding K L. Self-supported heterogeneous catalysts for enantioselective hydrogenation. J Am Chem Soc, 2004, 126: 10524-10525
[20]  60 He Y M, Feng Y, Fan Q H. Asymmetric hydrogenation in the core of dendrimers. Acc Chem Res, 2014, 47: 2894-2906
[21]  61 Hamilton G L, Kang E J, Mba M, et al. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science, 2007, 317: 496-499
[22]  62 Zhang Z, Wang Z, Zhang R, et al. An efficient titanium catalyst for enantioselective cyanation of aldehydes: Cooperative catalysis. Angew Chem Int Ed, 2010, 49: 6746-6750
[23]  63 Ohmatsu K, Ito M, Kunieda T, et al. Ion-paired chiral ligands for asymmetric palladium catalysis. Nat Chem, 2012, 4: 473-477
[24]  64 Zhou Y G. Asymmetric hydrogenation of heteroaromatic compounds. Acc Chem Res, 2007, 40: 1357-1366
[25]  65 Zhu S F, Zhou Q L. Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions. Acc Chem Res, 2012, 45: 1365-1377
[26]  66 Li W, Wang J, Hao X, et al. Catalytic asymmetric Roskamp reaction of α-alkyl-α-diazoesters with aromatic aldehydes: Highly enantioselective synthesis of α-alkyl-b-keto esters. J Am Chem Soc, 2010, 132: 8532-8533
[27]  67 Zhuo C X, Zhang W, You S L. Catalytic asymmetric dearomatization reactions. Angew Chem Int Ed, 2012, 51: 12662-12686
[28]  68 Shaikh N S, Enthaler S, Junge K, et al. Iron-catalyzed enantioselective hydrosilylation of ketones. Angew Chem Int Ed, 2008, 47: 2497-2501
[29]  69 Zhu S F, Cai Y, Mao H X, et al. Enantioselective iron-catalyzed O-H bond insertions. Nat Chem, 2010, 2: 546-551
[30]  70 Zuo W, Lough A J, Li Y F, et al. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science, 2013, 342: 1080-1083
[31]  71 Li Y Y, Yu S L, Wu X F, et al. Iron catalyzed asymmetric hydrogenation of ketones. J Am Chem Soc, 2014, 136: 4031-4039
[32]  72 Berkessel A, Gr?ger H. Asymmetric oranocatalysis?From biomimetic concepts to application in asymmetric synthesis. Weinheim: Wiley-VCH, 2005
[33]  73 Tang Z, Jiang F, Yu L T, et al. Novel small organic molecules for a highly enantioselective direct Aldol reaction. J Am Chem Soc, 2003, 125: 5262-5263
[34]  74 Luo S Z, Xu H, Li J Y, et al. A simple primary-tertiary diamine-br?nsted acid catalyst for asymmetric direct Aldol reactions of linear aliphatic ketones. J Am Chem Soc, 2007, 130: 3074-3075
[35]  75 Lou S Z, Mi X, Zhang L, et al. Functionalized chiral ionic liquids as highly efficient asymmetric organocatalysts for Micheal addition to nitroolefins. Angew Chem Int Ed, 2006, 45: 3093-3097
[36]  76 Liu J, Yang Z G, Wang Z, et al. Asymmetric direct Aldol reaction of functionalized ketones catalyzed by amine organocatalysts based on bispidine. J Am Chem Soc, 2008, 130: 5654-5655
[37]  77 Cao C L, Ye M C, Sun X L, et al. Pyrrolidine-thiourea as a bifunctional organocatalyst: Highly enantioselective Michael addition of cyclohexanone to nitroolefins. Org Lett, 2006, 8: 2901-2904
[38]  78 Cao Y J, Lai Y Y, Wang X, et al. Michael additions in water of ketones to nitroolefins catalyzed by readily tunable and bifunctional pyrrolidine-thiourea organocatalysts. Tetrahedron Lett, 2007, 48: 21-24
[39]  79 Wei Y, Shi M. Multifunctional chiral phosphine organocatalysts in catalytic asymmetric Morita-Baylis-Hillman and related reactions. Acc Chem Res, 2010, 43: 1005-1018
[40]  80 Xiao H, Chai Z, Zheng C W, et al. Asymmetric [3+ cycloadditions of allenoates and dual activated olefins catalyzed by simple bifunctional N-acyl aminophosphines. Angew Chem Int Ed, 2010, 49: 4467-4470
[41]  1 Jacobsen E N, Pfaltz A, Yamamoto H. Comprehensive Asymmetric Catalysis I~III. Berlin: SpringerVerlag, 1999
[42]  2 Lin G Q, Li Y M, Chen X Q, et al. Chiral Synthesis——Asymmetry Reaction and Its Application (in Chinese). 4th ed. Beijing: Science Press, 2010 [林国强, 李月明, 陈耀全, 等. 手性合成——不对称反应及其应用(第4版). 北京: 科学出版社,
[43]  3 Knowles W S, Sabacky M J, Vineyard B D, et al. Asymmetric hydrogenation with a complex of rhodium and a chiral bisphosphine. J Am Chem Soc, 1975, 97: 2567-2568
[44]  4 Knowles W S. Asymmetric hydrogenation. Angew Chem Int Ed, 2002, 41: 1998-2007
[45]  5 Pasteur L. Mémoire sur la relation qui peut eüxister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire. C. R. Hebd Seance Acad Sci Paris, 1848, 26: 535-538
[46]  6 Pasteur L. Mémoire sur la fermentation de l'acide tartrique. C. R. Hebd Seance Acad Sci Paris, 1858, 46: 615-618
[47]  7 Fischer E. über die optischen isomeren des traubenzuckers, der glucons?ure und der zuckers?ure. Ber Dtsch Chem Ges, 1890, 23: 2611-2620
[48]  8 Fischer E. Synthesen in der zuckergruppe. Ber Dtsch Chem Ges, 1894, 27: 3189-3232
[49]  9 Marckwald W, McKenzie A. Ueber eine principiell neue methode zur spaltung racemischer verbindungen in die activen bestandtheile. Ber Dtsch Chem Ges, 1899, 32: 2130-2136
[50]  10 Marckwald W. Ueber asymmetrische synthese. Ber Dtsch Chem Ges, 1904, 37: 349-354
[51]  11 Rosenthaler L. Enzyme bewirkte asymmetrische synthesen. Biochem Z, 1908, 14: 238-253
[52]  12 Bredig G, Fiske P S. Durch catalysatoren bewirkte asymmetrische synthese. Biochem Z, 1912, 46: 7-23
[53]  13 Hayashi S. Experimentelle untersuchungen fiber die sterischen verh?Itnisse bei der dismatafion yon phenylglyoxalhydrat dutch verschiedene bakterien. Biochem Z, 1929, 206: 223-227
[54]  14 Akabori S, Izumi Y, Fuji Y. An asymmetric catalyst. Nature, 1956, 178: 323-324
[55]  15 Natta G, Farina M, Peraldo M, et al. Asymmetric synthesis of optically active di-isotactic polymers from cyclic monomers. Makromol Chem, 1961, 43: 68-75
[56]  16 Natta G, Porri L, Valenti S. Synthesis of optically active cis-1,4-poly(1,3-pentadiene) by asymmetric induction. Makromol Chem, 1963, 67: 225-228
[57]  17 Nozaki H, Moriuti S, Takaya H, et al. Aysmmetric induction in carbenoid reactions by means of a dissymmetric copper chelate. Tetrahedron Lett, 1966, 7: 5239-5244
[58]  18 Knowles W S, Sabacky M J. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem Commun, 1968, 1445-1446
[59]  19 H?rner L, Siegel H, Buthe H. Asymmetric catalytic hydrogenation with an optically active phosphine rhodium complex in homogeneous solution. Angew Chem Int Ed, 1968, 7: 942-943
[60]  20 Dang T P, Kagan H B. The asymmetric synthesis of hydratropic acid and amino-acids by homogeneous catalytic hydrogenation. J Chem Soc, 1971, 481
[61]  21 Miyashita A, Yasuda A, Takaya H, et al. Synthesis of 2,2¢-bis(diphenylphosphino)-1,1¢-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of α-(acylamino)acrylic acids. J Am Chem Soc, 1980, 102: 7932-7934
[62]  22 Noyori R. Asymmetric catalysis: Science and opportunities. Angew Chem Int Ed, 2000, 41: 2008-2022
[63]  23 Chan A S C, Hu W, Pai C C, et al. Novel spiro phosphinite ligands and their application in homogeneous catalytic hydrogenation reactions. J Am Chem Soc, 1997, 119: 9570-9571
[64]  24 Wu J, Chan A S C. P-Phos: A family of versatile and effective atropisomeric dipyridylphosphine ligands in asymmetric catalysis. Acc Chem Res, 2006, 39: 711-720
[65]  25 Zhu G, Cao P, Jiang Q, et al. High enantioselective Rh-catalyzed hydrogenations with a new chiral 1,4-bisphosphine containing a cyclic backbone. J Am Chem Soc, 1997, 119: 1799-1800
[66]  26 Jiang Q, Jiang Y, Xiao D, et al. High enantioselective hydrogenation of simple ketones catalyzed by a Rh-PennPhos complex. Angew Chem Int Ed, 1998, 37: 1100-1103
[67]  27 Zhang W, Chi Y, Zhang X. Developing chiral ligands for asymmetric hydrogenation. Acc Chem Res, 2007, 40: 1278-1290
[68]  28 Dai L X, Tu T, You S L, et al. Asymmetric catalysis with chiral ferrocene ligands. Acc Chem Res, 2003, 36: 659-667
[69]  29 Blaser H U. The chiral switch of (S)-Metolachlor: A personal account of an industrial odyssey in asymmetric catalysis. Adv Synth Catal, 2002, 344: 17-31
[70]  30 Blaser H U, Spindler F, Studer M. Enantioselective catalysis in fine cemicals production. Appl Cataly A Gen, 2001, 221: 119-143
[71]  31 Katsuki T, Sharpless K B. The first practical method for asymmetric epoxidation. J Am Chem Soc, 1980, 102: 5974-5976
[72]  32 Jacobsen E N, Marko I, Mungall W S, et al. Asymmetric dihydroxylation via ligand-accelerated catalysis. J Am Chem Soc, 1988, 110: 1968-1970
[73]  33 Eder U, Sauer G, Wiechert R. New type of asymmetric cyclization to optically active steroid CD partial structures. Angew Chem Int Ed, 1971, 10: 496-497
[74]  34 Hajos Z G, Parrish D R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J Org Chem, 1974, 39: 1615-1621
[75]  35 Tu Y, Wang Z X, Shi Y. An efficient asymmetric epoxidation method for trans-olefins mediated by a fructose-derived ketone. J Am Chem Soc, 1996, 118: 9806-9807
[76]  36 Yang D, Wang X C, Wong M K, et al. Highly enantioselective epoxidation of trans-stilbenes catalyzed by chiral ketones. J Am Chem Soc, 1996, 118: 11311-11312
[77]  37 List B, Lerner R A, Barbas III C F. Proline-catalyzed direct asymmetric Aldol reactions. J Am Chem Soc, 2000, 122: 2395-2396
[78]  38 Ahrendt K A, Borths C J, MacMillan D W C. New strategies for organic catalysis: The first highly enantioselective organocatalytic Diels-Alder reaction. J Am Chem Soc, 2000, 122: 4243-4244
[79]  39 Meyers A I, Knaus G, Kamata K. Synthesis via 2-oxazolines. IV. Asymmetric synthesis of 2-methylalkanoic acids from a chiral oxazoline. J Am Chem Soc, 1974, 96: 268-270
[80]  40 Corey E J, Ensley H E. Preparation of an optically active prostaglandin intermediate via asymmetric induction. J Am Chem Soc, 1975, 97: 6908-6909
[81]  81 Yu J, Shi F, Gong L Z. Br?nsted acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc Chem Res, 2011, 44: 1156-1171
[82]  82 Wen Y H, Huang X, Huang J L, et al. Asymmetric cyanosilylation of aldehydes catalyzed by novel organocatalysts. Synlett, 2005, (16): 2445-2448
[83]  83 Yu Z P, Liu X H, Zhou L, et al. Bifunctional guanidine via an amino amide skeleton for asymmetric Michael reactions of β-ketoesters with nitroolefins: A concise synthesis of bicyclic β-amino acids. Angew Chem Int Ed, 2009, 48: 5195-5198
[84]  84 Dong S X, Liu X H, Chen X H, et al. Chiral bisguanidine-catalyzed inverse-electron-demand hetero-Diels-Alder reaction of chalcones with azlactones. J Am Chem Soc, 2010, 132: 10650-10651
[85]  85 Jia Y X, Zhong J, Zhu S F, et al. Chiral Br?nsted acid catalyzed enantioselective Friedel-Crafts reaction of indoles and a-aryl enamides: Construction of quaternary carbon atoms. Angew Chem Int Ed, 2007, 46: 5565-5567
[86]  86 Xie J W, Chen R, Li R, et al. Highly asymmetric Michael addition to a,β-unsaturated ketones catalyzed by 9-amino-9-deoxyepiquinine. Angew Chem Int Ed, 2007, 46: 389-392
[87]  87 Chen W, Du W, Duan Y Z, et al. Enantioselective 1,3-dipolar cycloaddition of cyclic enones catalyzed by multifunctional primary amines: beneficial effects of hydrogen bonding. Angew Chem Int Ed, 2007, 46: 7667-7670
[88]  88 Zhang Q W, Fan C A, Zhang H J, et al. Br?nsted acid catalyzed enantioselective Semipinacol rearrangement for the synthesis of chiral spiroethers. Angew Chem Int Ed, 2009, 48: 8572-8574
[89]  89 Zhang E, Fan C A, Tu Y Q. Organocatalytic asymmetric vinylogous a-ketol rearrangement: Enantioselective construction of chiral all-carbon quaternary stereocenters in spirocyclic diketones via Semipinacol-type 1,2-carbon migration. J Am Chem Soc, 2009, 131: 14626-14627
[90]  90 Wang X F, Hua Q L, Cheng Y, et al, Organocatalytic asymmetric sulfa-Michael/Michael addition reaction: A strategy for the synthesis of highly substituted chromans with quaternary stereocenter. Angew Chem Int Ed, 2010, 49: 8379-8383
[91]  91 Taylor M S, Jacobsen E N. Highly enantioselective catalytic acyl-Pictet-Spengler reactions. J Am Chem Soc, 2004, 126: 10558-10559
[92]  92 Liu X, Qin B, He B, et al. Catalytic asymmetric cyanosilylation of ketones by a chiral amino acid salt. J Am Chem Soc, 2005, 127: 12224-12225
[93]  93 Mayor S, List B. Asymmetric counteranion-directed catalysis. Angew Chem Int Ed, 2006, 45: 4193-4195
[94]  94 Beeson T D, Mastracchio A, Hong J, et al. Enantioselective organocatalysis using SOMO activation. Science, 2007, 316: 582-585
[95]  95 Ishikawa H, Suzuki T, Hayashi Y. High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-Oseltamivir by three “one-pot” operations. Angew Chem Int Ed, 2009, 48: 1304-1307
[96]  96 Zhu S, Yu S, Wang Y, et al. Organocatalytic Michael addition of aldehydes to protected 2-amino-1-nitroethenes: The practical syntheses of Oseltamivir (Tamiflu) and substituted 3-aminopyrrolidines. Angew Chem Int Ed, 2010, 49: 4656-4660
[97]  97 Nicolaou K C, Montagnon T. Molecules that Changed the World. Weinheim: Wiley-VCH, 2008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133