27 Chen X M, Wu J, Ma R Y, et al. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv Funct Mater, 2011, 21: 4617-4623
[2]
1 Ma X H, Chen J B, Li S P, et al. Application of absorption heat transformer to recover waste heat from a synthetic rubber plant. Appl Therm Eng, 2003, 23: 797-806
[3]
2 Khawaji A D, Kutubkhanah I K, Wie J M. Advances in sea-water desalination technologies. Desalination, 2008, 221: 47-69
[4]
3 Andrews H G, Eccles E A, Schofield W C E, et al. Three-dimensional hierarchical structures for fog harvesting. Langmuir, 2011, 27: 3798-3802
[5]
4 Milani D, Abbas A, Vassallo A, et al. Evaluation of using thermoelectric coolers in a dehumidification system to generate freshwater from ambient air. Chem Eng Sci, 2011, 66: 2491-2501
[6]
5 Miljkovic N, Enright R, Wang E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano, 2011, 5: 5962-5968
[7]
6 Lan Z, Ma X H, Wang S F, et al. Effects of surface free energy and nanostructures on dropwise condensation. Chem Eng J, 2010, 156: 546-552
[8]
7 Enright R, Miljkovic N, Dou N, et al. Condensation on superhydrophobic copper oxide nanostructures. J Heat Transfer, 2013, 135: 091304
[9]
8 Rausch M H, Fr?ba A P, Leipertz A. Dropwise condensation heat transfer on ion-implanted aluminum surfaces. Int J Heat Mass Transfer, 2008, 51: 1061-1070
[10]
9 Rausch M H, Leipertz A, Fr?ba A P. Dropwise condensation heat transfer on ion-implanted titanium surfaces. Int J Heat Mass Transfer, 2010, 53: 423-430
[11]
10 Volchkov E P, Makarov M S, Makarova S N. Heat and mass diffusion fluxes on a permeable wall with foreign-gas blowing. Int J Heat Mass Transfer, 2012, 55: 1881-1887
[12]
11 Ma X H, Zhou X D, Lan Z, et al. Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. Int J Heat Mass Transfer, 2008, 51: 1728-1737
[13]
12 Wen R F, Lan Z, Peng B L, et al. Droplet dynamics and heat transfer for dropwise condensation at lower and ultra-lower pressure. Appl Therm Eng, 2014, doi: 10.1016/j.applthermaleng.2014.09.069
[14]
13 Tanaka H. Effect of Kundsen number on dropwise condensation. J Heat Transfer, 1981, 103: 606-607
[15]
14 Vemuri S, Kim K J, Wood B D, et al. Long term testing for dropwise condensation using self-assembled monolayer coating of n-octadecyl mercaptan. Appl Therm Eng, 2006, 26: 421-429
[16]
15 Vemuri S, Kim K J. An experimental and theoretical study on the concept of dropwise condensation. Int J Heat Mass Transfer, 2006, 49: 649-657
[17]
16 Wilmshurst R, Rose J W. Dropwise condensation-further heat transfer measurement. In: Proceeding of 4th International Heat Transfer Conference. Versailles, 1970. 6: 1-4
[18]
17 Graham C. The limiting heat transfer mechanisms of dropwise condensation. Dissertation for Doctoral Degree. Cambridge: Massachusetts Institute of Technology, 1969
[19]
18 Tanaka H, Tsuruta T A. A microscopic study of dropwise condensation. Int J Heat Mass Transfer, 1984, 27: 327-335
[20]
19 Hatamiya S, Tanaka H. Dropwise condensation of steam at low pressures. Int J Heat Mass Transfer, 1987, 30: 497-507
[21]
20 Ma X H, Wang S F, Lan Z, et al. Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas. J Heat Transfer, 2012, 134: 021501
[22]
21 Miljkovic N, Enright R, Nam Y, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett, 2013, 13: 179-187
[23]
22 Rykaczewski K, Scott J H J. Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. ACS Nano, 2011, 5: 5962-5968
[24]
23 Rykacaewski K, Chinn J, Walker M L, et al. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation. ACS Nano, 2011, 5: 9746-9754
[25]
24 Dietz C, Rykaczewski K, Fedorv A G, et al. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Appl Phys Lett, 2010, 97: 033104
[26]
25 Anand S, Son S Y. Sub-micrometer dropwise condensation under superheated and rarefied vapor condition. Langmuir, 2010, 26: 17100-17110
[27]
26 Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces. Phys Rev Lett, 2009, 103: 184501
[28]
28 Yamali C, Merte H J. A theory of dropwise condensation at large subcooling including the effect of the sweeping. Heat Mass Transfer, 2002, 38: 191-202
[29]
29 Lan Z, Ma X H, Wang S F, et al. Effect of surface free energy and nanostructures on dropwise condensation. Chem Eng J, 2010, 156: 546-552
[30]
30 Wilcox S J, Rohsenow W M. Film condensation of potassium using copper condensing block for precise wall-temperature measurement. J Heat Transfer, 1970, 92: 359-371
[31]
31 Liao Q, Zhu X, Xing S M. Visualization study on coalescence between pair of water drops on inclined surfaces. Exp Therm Fluid Sci, 2008, 32: 1647-1654
[32]
32 Manor O. Diminution of contact angle hysteresis under the influence of an oscillating force. Langmuir, 2014, 30: 6814-6845
[33]
33 Dimitrakopoulos P, Higdon J J L. On the gravitational displacement of three-dimensional fluid droplets from inclined solid sufaces. J Fluid Mech, 1999, 395: 181-209
[34]
34 Kim H Y, Lee H J, Kang B H. Sliding of liquid drops down an inclined solid surface. J Colloid Interface Sci, 2002, 247: 372-380
[35]
35 Chatterjee A, Derby M M, Peles Y, et al. Condensation heat transfer on patterned surfaces. Int J Heat Mass Transfer, 2013, 66: 889-897
[36]
36 Qi B J, Zhang L, Xu H. Experiment study on condensation heat transfer of steam on vertical titanium plates with different surface energies. Exp Therm Fluid Sci, 2011, 35: 211-218