1 Unruh W G. Notes on black hole evaporation. Phys Rev D, 1976, 14: 870-892
[2]
2 Hawking S W. Black hole explosions? Nature, 1974, 248: 30-31
[3]
3 Hawking S W. Particle creation by black holes. Commun Math Phys, 1975, 43: 199-220
[4]
4 Parker L. Particle creation in expanding universes. Phys Rev Lett, 1968, 21: 562-564
[5]
5 Unruh W G. Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Phys Rev D, 1995, 51: 2827-2838
[6]
6 Jacobson T. On the origin of the outgoing black hole modes. Phys Rev D, 1996, 53: 7082-7088
[7]
7 Corley S, Jacobson T. Black hole lasers. Phys Rev D, 1999, 59: 124011
[8]
8 Visser M. Essential and inessential features of Hawking radiation. Int J Mod Phys D, 2003, 12: 649-661
[9]
9 Unruh W G. Has Hawking radiation been measured? Found Phys, 2014, 44: 532-545
[10]
10 Gordon W. Zur Lichtfortpflanzung nach der relativit?tstheorie. Ann Phys (Leipzig), 1923, 72: 421-456
[11]
11 Tamm Y. The electrodynamics of anisotropic media in the special theory of relativity. J Russ Phys-Chem Soc, 1924, 56: 248
[12]
12 Rytov S M. On transition from wave to geometrical optics. Compt Rend (Doklady) Acad Sci URSS, 1938, 18: 263
[13]
13 Landau L D, Lifshitz E M. The Classical Theory of Fields. Oxford: Pergamon Press, 1971
[14]
14 Barcelo C, Liberati S, Visser M. Analogue gravity. Living Rev Relativ, 2011, 14: 3
[15]
15 Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780-1782
[16]
16 Leonhardt U. Optical conformal mapping. Science, 2006, 312: 1777-1780
[17]
17 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292: 77-79
[18]
18 Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966-3969
[19]
19 Genov D A, Zhang S, Zhang X. Mimicking celestial mechanics in metamaterials. Nat Phys, 2009, 5: 687-692
[20]
20 Narimanov E E, Kildishev A V. Optical black hole: Broadband omnidirectional light absorber. App Phys Lett, 2009, 95: 041106
[21]
21 Chen H, Miao R X, Li M. Transformation optics that mimics the system outside a Schwarzschild black hole. Opt Express, 2010, 18: 15183-15188
[22]
22 Grennleaf A, Kurylev Y, Lassas M, et al. Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys Rev Lett, 2007, 99: 183901
[23]
23 Cheng Q, Cui T J, Jiang W X, et al. An omnidirectional electromagnetic absorber made of metamaterials. New J Phys, 2010, 12: 063006
[24]
24 Zhou J, Cai X B, Chang Z, et al. Experimental study on a broadband omnidirectional electromagnetic absorber. J Opt, 2011, 13: 085103
[25]
25 Yang Y R, Leng L Y, Wang N, et al. Electromagnetic field attractor made of gradient index metamaterials. J Opt Soc Am A, 2012, 29: 473-475
[26]
26 Sheng C, Liu H, Wang Y, et al. Trapping light by mimicking gravitational lensing. Nat Photon, 2013, 7: 902-906
[27]
27 Naify C J, Martin T P, Layman C N, et al. Underwater acoustic omnidirectional absorber. Appl Phys Lett, 2014, 104: 073505
[28]
28 Unruh W G. Experimental black-hole evaporation. Phys Rev Lett, 1981, 46: 1351-1353
[29]
29 Vachaspati T. Cosmic problems for condensed matter experiment. J Low Temp Phys, 2004, 136: 361-377
[30]
30 Novello M, Visser M, Volovik G. Artificial Black Holes. Singapore: World Scientific, 2002
[31]
31 Schutzhold R, Unruh W G. Quantum Analogues: From Phase Transitions to Black Holes and Cosmology. Berlin: Springer, 2007
[32]
32 Robertson S J. The theory of Hawking radiation in laboratory analogues. J Phys B, 2012, 45: 163001
[33]
33 Garay L J, Anglin J R, Cirac J I, et al. Sonic analog of gravitational black holes in bose-einstein condensates. Phys Rev Lett, 2000, 85: 4643-4647
[34]
34 Garay L J, Anglin J R, Cirac J I, et al. Sonic black holes in dilute Bose-Einstein condensates. Phys Rev A, 2011, 63: 023611
[35]
35 Jacobson T A, Volovik G E. Event horizons and ergoregions in 3He. Phys Rev D, 1998, 58: 064021
[36]
36 Giovanazzi S. Hawking radiation in sonic black holes. Phys Rev Lett, 2005, 94: 061302
[37]
37 Horstmann B, Reznik B, Fagnocchi S, et al. Hawking radiation from an acoustic black hole on an ion ring. Phys Rev Lett, 2010, 104: 250403
[38]
38 Lahav O, Itah A, Blumkin A, et al. Realization of a sonic black hole analog in a bose-einstein condensate. Phys Rev Lett, 2010, 105: 240401
[39]
39 Steinhauer J. Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nature Phys, 2014, 10: 864-869
[40]
40 Fedichev P O, Fischer U R. Gibbons-hawking effect in the sonic de sitter space-time of an expanding bose-einstein-condensed gas. Phys Rev Lett, 2003, 91: 240407 (Erratum: Phys Rev Lett, 2004, 92: 049901)
[41]
41 Jain P, Weinfurtner S, Visser M, et al. Analog model of a Friedmann-Robertson-Walker universe in Bose-Einstein condensates: Application of the classical field method. Phys Rev A, 2007, 76: 033616
[42]
42 Finazzi S, Liberati S, Sindoni L. Cosmological constant: a lesson from bose-einstein condensates. Phys Rev Lett, 2012, 108: 071101
[43]
43 Fischer U R, Schützhold R. Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates. Phys Rev A, 2004, 70: 063615
[44]
44 Schützhold R, Uhlmann M, Xu Y, et al. Quantum backreaction in dilute Bose-Einstein condensates. Phys Rev D, 2005, 72: 105005
[45]
45 Retzker A, Cirac J I, Plenio M B, et al. Methods for detecting acceleration radiation in a bose-einstein condensate. Phys Rev Lett, 2008, 101: 110402
[46]
46 Schützhold R, Unruh W G. Gravity wave analogues of black holes. Phys Rev D, 2002, 66: 044019
[47]
47 Visser M. Survey of analogue spacetimes. Lecture Notes Phys, 2013, 870: 31-50
[48]
48 Rousseaux G, Mathis C, Maissa P, et al. Observation of negative-frequency waves in a water tank: A classical analogue to the Hawking effect? New J Phys, 2008, 10: 053015
[49]
49 Weinfurtner S, Tedford E W, Penrice M C J, et al. Measurement of stimulated hawking emission in an analogue system. Phys Rev Lett, 2011, 106: 021302
[50]
50 Philbin T G, Kuklewicz C, Robertson S, et al. Fiber-optical analogue of the event horizon. Science, 2008, 319: 1367-1370
[51]
51 Belgiorno F, Cacciatori S L, Clerici M, et al. Hawking radiation from ultrashort laser pulse filaments. Phys Rev Lett, 2010, 105: 203901
[52]
52 Schützhold R, Unruh W G. Comment on “Hawking Radiation from Ultrashort Laser Pulse Filaments”. Phys Rev Lett, 2011, 107: 149401
[53]
53 Belgiorno F, Cacciatori S L, Clerici M, et al. Belgiorno et al. reply. Phys Rev Lett, 2011, 107: 149402
[54]
54 Liberati S, Prain A, Visser M. Quantum vacuum radiation in optical glass. Phys Rev D, 2012, 85: 084014
[55]
55 Unruh W G, Schützhold R. Hawking radiation from “phase horizons” in laser filaments? Phys Rev D, 2012, 86: 064006
[56]
56 Belgiorno F, Cacciatori S L, Ortenzi G, et al. Dielectric black holes induced by a refractive index perturbation and the Hawking effect. Phys Rev D, 2011, 83: 024015
[57]
57 Cacciatori S L, Belgiorno F, Gorini V, et al. Spacetime geometries and light trapping in travelling refractive index perturbations. New J Phys, 2010, 12: 095021
[58]
58 Finazzi S, Carusotto I. Kinematic study of the effect of dispersion in quantum vacuum emission from strong laser pulses. Eur Phys J Plus, 2012, 127: 78
[59]
59 Finazzi S, Carusotto I. Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse. Phys Rev A, 2013, 87: 023803
[60]
60 Finazzi S, Carusotto I. Spontaneous quantum emission from analog white holes in a nonlinear optical medium. Phys Rev A, 2014, 89: 053807
[61]
61 Belgiorno F, Cacciatori S L, Piazza F D. The Hawking effect in dielectric media and the Hopfield model. arXiv: 1411.7870
[62]
62 Belgiorno F, Cacciatori S L, Piazza F D. Tunneling approach and thermality in dispersive models of analogue gravity. arXiv: 1411.7871
[63]
63 Visser M. Hawking radiation without black hole entropy. Phys Rev Lett, 1998, 80: 3436-3439
[64]
64 Barceló C, Liberati S, Sonego S, et al. Hawking-like radiation does not require a trapped region. Phys Rev Lett, 2006, 97: 171301
[65]
65 Giovanazzi S. Entanglement entropy and mutual information production rates in acoustic black holes. Phys Rev Lett, 2011, 106: 011302
[66]
66 Rinaldi M. Entropy of an acoustic black hole in Bose-Einstein condensates. Phys Rev D, 2011, 84: 124009
[67]
67 Zhang L C, Li H F, Zhao R, et al. Entanglement entropy of acoustic black hole in Bose-Einstein Condensate. Astrophys Space Sci, 2013, 344: 451-454
[68]
68 Zhang L C, Li H F, Zhao R, et al. The entropy of a dielectric black hole. Mod Phys Lett, 2013, 28: 1350009
[69]
69 Konoplya R A, Zhidenko A. Quasinormal modes of black holes: From astrophysics to string theory. Rev Mod Phys, 2011, 83: 793-836
[70]
70 Berti E, Cardoso V, Lemos J P S. Quasinormal modes and classical wave propagation in analogue black holes. Phys Rev D, 2004, 70: 124006
[71]
71 Vitor Cardoso V, Lemos J P S, Yoshida S. Quasinormal modes and stability of the rotating acoustic black hole: Numerical analysis. Phys Rev D, 2004, 70: 124032
[72]
72 Nakano H, Kurita Y, Ogawa K, et al. Quasinormal ringing for acoustic black holes at low temperature. Phys Rev D, 2004, 71: 084006
[73]
73 Abdalla E, Konoplya R A, Zhidenko A. Perturbations of Schwarzschild black holes in laboratories. Class Quantum Grav, 2007, 24: 5901-5910
[74]
74 Barcelo C, Cano A, Garay L J, et al. Stability analysis of sonic horizons in Bose-Einstein condensates. Phys Rev D, 2006, 74: 024008
[75]
75 Barcelo C, Cano A, Garay L J, et al. Quasi-normal mode analysis in BEC acoustic black holes. Phys Rev D, 2007, 75: 084024
[76]
76 Daghigh R G, Green M. High overtone quasinormal modes of analog black holes and the small scale structure of the background fluid. arXiv: 1411.7066
[77]
77 Anderson P R, Balbinot R, Fabbri A, et al. Gray-body factor and infrared divergences in 1D BEC acoustic black holes. Phys Rev D, 2014, 90: 104044
[78]
78 Makhlin Y, Sch?n G, Shnirman A. Quantum-state engineering with Josephson-junction devices. Rev Mod Phys, 2001, 73: 357-400
[79]
79 You J Q, Nori F. Superconducting circuits and quantum information. Phys Today, 2005, 58: 42-47
[80]
80 Clarke J, Wilhelm F K. Superconducting quantum bits. Nature, 2008, 453: 1031-1042
[81]
81 Schoelkopf R J, Girvin S M. Wiring up quantum systems. Nature, 2008, 451: 664-669
[82]
82 You J Q, Nori F. Atomic physics and quantum optics using superconducting circuits. Nature, 2011, 474: 589-597
[83]
83 Nation P D, Johansson J R, Blencowe M P, et al. Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev Mod Phys, 2012, 84: 1-24
[84]
84 Fragner A, Goppl M, Fink J M, et al. Resolving vacuum fluctuations in an electrical circuit by measuring the lamb shift. Science, 2008, 322: 1357-1360
[85]
85 Schützhold R, Unruh W G. Hawking radiation in an electromagnetic waveguide? Phys Rev Lett, 2005, 95: 031301
[86]
86 Nation P D, Blencowe M P, Rimberg A J, et al. Analogue hawking radiation in a dc-SQUID array transmission line. Phys Rev Lett, 2009, 103: 087004
[87]
87 Moore G. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J Math Phys, 1970, 11: 2679-2691
[88]
88 Wilson C M, Johansson G, Pourkabirian A, et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 2011, 479: 376-379
[89]
89 Lahteenmaki P, Paraoanu G S, Hassel J, et al. Dynamical Casimir effect in a Josephson metamaterial. Proc Natl Acad Sci USA, 2013, 110: 4234-4238
[90]
90 Fulling S A, Davies P C W. Radiation from a moving mirror in two dimensional space-time: conformal anomaly. Proc R Soc London A, 1976, 348: 393-414
[91]
91 Davies P C W, Fulling S A. Radiation from moving mirrors and from black holes. Proc R Soc London A, 1977, 356: 237-257
[92]
92 Yablonovitch E. Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: Unruh-Davies-Fulling-DeWitt radiation and the nonadiabatic Casimir effect. Phys Rev Lett, 1989, 62: 1742-1745
[93]
93 Jaskula J C, Partridge G B, Bonneau M, et al. Acoustic analog to the dynamical casimir effect in a bose-einstein condensate. Phys Rev Lett, 2012, 109: 220401
[94]
94 Hu J, Zhou W, Yu H. Dynamics of an elementary quantum system outside a radiating Schwarzschild black hole. Phys Rev D, 2013, 88: 085035
[95]
95 Bellomo B, Messina R, Felbacq D, et al. Quantum systems in a stationary environment out of thermal equilibrium. Phys Rev A, 2013, 87: 012101
[96]
96 Li M, Miao R X, Pang Y. More studies on metamaterials mimicking de Sitter space. Opt Express, 2010, 18: 9026-9033
[97]
97 Li M, Miao R X, Pang Y. Casimir energy, holographic dark energy and electromagnetic metamaterial mimicking de Sitter. Phys Lett B, 2010, 689: 55-59
[98]
98 Smolyaninov I I, Narimanov E. Metric signature transitions in optical metamaterials. Phys Rev Lett, 2010, 105: 067402
[99]
99 Smolyaninov I I, Hwang E, Narimanov E. Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions. Phys Rev B, 2012, 85: 235122
[100]
100 Smolyaninov I I, Hung Y J. Modeling of time with metamaterials. J Opt Soc Am B, 2011, 28: 1591-1595
[101]
101 Smolyaninov I I, Hung Y J, Hwang E. Experimental modeling of cosmological inflation with metamaterials. Phys Lett A, 2012, 376: 2575-2579
[102]
102 Smolyaninov I I, Kildishev A V. Light propagation through random hyperbolic media. Opt Lett, 2013, 38: 971-973
[103]
103 Smolyaninov I I. Holographic duality in nonlinear hyperbolic metamaterials. J Opt, 2014, 16: 075101
[104]
104 Zhang S, Genov D A, Sun C, et al. Cloaking of matter waves. Phys Rev Lett, 2008, 100: 123002
[105]
105 Br?lé S, Javelaud E H, Enoch S, et al. Experiments on seismic metamaterials: Molding surface waves. Phys Rev Lett, 2014, 112: 133901
[106]
106 Guenneau S, Amra C, Veynante D. Transformation thermodynamics: Cloaking and concentrating heat flux. Opt Expr, 2012, 20: 8207-8218
[107]
107 Narayana S, Sato Y. Heat flux manipulation with engineered thermal materials. Phys Rev Lett, 2012, 108: 214303
[108]
108 Schittny R, Kadic M, Guenneau S, et al. Experiments on transformation thermodynamics: Molding the flow of heat. Phys Rev Lett, 2013, 110: 195901
[109]
109 Ma Y, Liu Y, Raza M, et al. Experimental demonstration of a multiphysics cloak: Manipulating heat flux and electric current simultaneously. Phys Rev Lett, 2014, 113: 205501
[110]
110 Antezza M, Pitaevskii L P, Stringari S, et al. New asymptotic behavior of the surface-atom force out of thermal equilibrium. Phys Rev Lett, 2005, 95: 113202
[111]
111 Obrecht J M, Wild R J, Antezza M, et al. Measurement of the temperature dependence of the casimir-polder force. Phys Rev Lett, 2007, 98: 063201
[112]
112 Dalibard J, Dupont-Roc J, Cohen-Tannoudji C. Vacuum fluctuation and radiation reaction: Identification of their respective contributions. J Phys, 1982, 43: 1617-1638
[113]
113 Dalibard J, Dupont-Roc J, Cohen-Tannoudji C. Dynamics of a small system coupled to a reservoir: Reservoir fluctuations and self-reaction. J Phys, 1984, 45: 637-656
[114]
114 Zhou W, Yu H. Energy shift and Casimir-Polder force for an atom out of thermal equilibrium near a dielectric substrate. Phys Rev A, 2014, 90: 032501
[115]
115 Zhang J, Yu H. Casimir-Polder-like force on an atom outside a Schwarzschild black hole. Phys Rev A, 2011, 84: 042103
[116]
116 Zhang J, Yu H. Far-zone interatomic Casimir-Polder potential between two ground-state atoms outside a Schwarzschild black hole. Phys Rev A, 2013, 88: 064501