3 Gibbs J W. On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci, 1873, 3: 108-248
[2]
4 Gibbs J W. On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci, 1874, 3: 343-524
[3]
5 Gibbs J W. The Collected Works of J. Willard Gibbs. New Haven: Yale University Press, 1948
[4]
6 Volmer M. Kinetik der Phasenbildung. Leipzig: Verlag von Theodor Steinkopff, 1939
[5]
7 Becker R, D?ring W. Kinetische behandlung der keimbildung in übers?ttigten d?mpfen. Annalen Der Physik, 1935, 416: 719-752
[6]
8 Mullin J W. Crystallization. Amsterdam: Elsevier Science, 2001
[7]
9 Xu R R, Zhang J M. The mechanism of formation and crystal growth of molecular-sieve-zeolite-(Ⅱ)—The study on nucleation of molecular-sieve-zeolite in a liquid phase by the electron diffraction method (in Chinese). Chem J Chin Univ, 1981, 2: 520-521 [徐如人, 张建民. 沸石分子筛的生成机理和晶体生长(Ⅱ)—电子衍射法研究液相中分子筛晶核的生成. 高等学校化学学报, 1981, 2: 520-
[8]
10 Pope C G. Nucleation and growth theory in zeolite synthesis. Micropor Mesopor Mater, 1998, 21: 333-336
[9]
11 Kerr G T. Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A. J Phys Chem, 1966, 70: 1047-1050
[10]
12 Ciric J. Kinetics of zeolite A crystallization. J Colloid Interface Sci, 1968, 28: 315-324
[11]
13 Zhdanov S P. Some problems of zeolite crystallization. In: Flanigen E M, Sand L B, eds. Molecular Sieve Zeolites-I. Washington D C: American Chemical Society. 1974. 20-43
[12]
14 Angell C L, Flank W H. Mechanism of zeolite A synthesis. In: Katzer J R, ed. Molecular Sieve Zeolites-(Ⅱ). Washington: American Chemical Society, 1977. 194-206
[13]
15 Xu R R, Liu X S. The mechanism of the formation and the crystal growth of molecular-sieve-zeolite (Ⅸ).The liquid phase mechanism of the formation of zeolite K-L (in Chinese). Acta Chim Sin, 1984, 42: 227-232 [徐如人, 刘新生. 沸石分子筛的生成机理与晶体生长(IX)-K-L型沸石生成的液相机理. 化学学报, 1984, 42: 227-
[14]
16 Brunner G O. A proposal for a mechanism of nucleation in zeolite synthesis. Zeolites, 1992, 12: 428-430
[15]
17 Ueda S, Kageyama N, Koizumi M. Crystallization of zeolite Y from solution phase. In: Olson E, Bisio A, eds. Proceedings of the 6th International Conference on Zeolites. Butterworths: Guildford, 1984. 905-913
[16]
18 Pang W Q, Ueda S, Mitsue K. The synthesis of zeolite NaA from homogeneous solutions and studies of its properties. Stud Surf Sci Catal, 1986, 28: 177-184
[17]
19 Pang W Q, Qiu S L, Kan Q B, et al. Synthesis and characterization of FAPO-5 crystallized from clear homogeneous solutions. Stud Surf Sci Catal, 1989, 49: 281-289
21 Houssin C J Y, Mojet B L, Kirschhock C E A, et al. 02-O-01-Small angle X-ray scattering on TPA-silicalite-1 precursors in clear solutions: Influence of silica source and cations. Stud Surf Sci Catal, 2001, 135: 140
[20]
22 Nikolakis V, Vlacho D G, Tsapatsis M. Modeling of zeolite crystallization: The role of gel microstructure. Micropor Mesopor Mater, 1998, 21: 337-346
[21]
23 Smaihi M, Kallus S, Ramsay J D F. In-situ NMR study of mechanisms of zeolite A formation. Stud Surf Sci Catal, 2001, 135: 189
[22]
24 Bronic J, Frontera P, Testa F, et al. 02-P-29-Study of zeolite a crystallization from clear solution by hydrothermal synthesis and population balance simulation. Stud Surf Sci Catal, 2001, 135: 192
[23]
25 Grizzetti R, Artioli G. Kinetics of nucleation and growth of zeolite LTA from clear solution by in situ and ex situ XRPD. Micropor Mesopor Mater, 2002, 54: 105-112
[24]
26 Yu Y, Xiong G, Li C, et al. Characterization of aluminosilicate zeolites by UV-Raman spectroscopy. Micropor Mesopor Mater, 2001, 46: 23-34
[25]
27 Breck D W, Flanigen E M. Molecular Sieves-Proceedings of the 1st International Zeolite Conference. London: Soc Chem Ind, 1968. 49
[26]
28 Breck D W. Crystalline molecular sieves. J Chem Educ, 1964, 41: 678
[27]
29 McNicol B D, Pott G T, Loos K R, et al. Spectroscopic studies of zeolite synthesis: Evidence for a solid-state mechanism. In: Meier W M, Uytterhoeven J B, eds. Molecular Sieves. Washington DC: American Chemical Society, 1973. 152-161
[28]
30 Xu W, Li J, Li W, et al. Nonaqueous synthesis of ZSM-35 and ZSM-5. Zeolites, 1989, 9: 468-473
[29]
31 Huo Q, Xu R. A new route for the synthesis of molecular sieves: Crystallization of AlPO-5 at high temperature. J Chem Soc Chem Commun, 1992, (2): 168-169
[30]
32 Ren L, Wu Q, Yang C, et al. Solvent-free synthesis of zeolites from solid raw materials. J Am Chem Soc, 2012, 134: 15173-15176
[31]
33 Jin Y, Sun Q, Qi G, et al. Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed, 2013, 52: 9172-9175
[32]
34 Serrano D P, Uguina M A, Ovejero G, et al. Evidence of solid-solid transformations during the TS-1 crystallization from amorphous wetness impregnated SiO2-TiO2 xerogels. Micropor Mater, 1996, 7: 309-321
[33]
35 Serrano D P, van Grieken R, Sánchez P, et al. Crystallization mechanism of all-silica zeolite beta in fluoride medium. Micropor Mesopor Mater, 2001, 46: 35-46
[34]
36 Uguina M A, Serrano D P, Ovejero G, et al. TS-2 synthesis from wetness-impregnated SiO2-TiO2 xerogels. Zeolites, 1997, 18: 368-378
[35]
37 Thomas J M, Bursill L A. Amorphous zeolites. Angew Chem Int Ed Eng, 1980, 19: 745-746
[36]
38 Derouane E G, Determmerie S, Gabelica Z, et al. Synthesis and characterization of ZSM-5 type zeolites i. Physico-chemical properties of precursors and intermediates. Appl Catal, 1981, 1: 201-224
[37]
39 Iton L E, Trouw F, Brun T O, et al. Small-angle neutron-scattering studies of the template-mediated crystallization of ZSM-5-type zeolite. Langmuir, 1992, 8: 1045-1048
[38]
40 van Grieken R, Sotelo J L, Menéndez J M, et al. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Micropor Mesopor Mater, 2000, 39: 135-147
[39]
41 Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Micropor Mesopor Mater, 2005, 82: 1-78
[40]
42 Chen B, Huang Y. 17O Solid-state NMR spectroscopic studies of the involvement of water vapor in molecular sieve formation by dry-gel conversion. J Am Chem Soc, 2006, 128: 6437-6446
[41]
43 Burkett S L, Davis M E. Mechanism of structure direction in the synthesis of Si-ZSM-5: An investigation by intermolecular 1H-29Si CP mas NMR. J Phys Chem, 1994, 98: 4647-4653
[42]
44 Kirschhock C E A, Ravishankar R, Verspeurt F, et al. Identification of precursor species in the formation of mfi zeolite in the TPAOH-TEOS-H2O system. J Phys Chem B, 1999, 103: 4965-4971
[43]
45 Kremer S, Theunissen E, Kirschhock C E A, et al. Microgravity effect on the self-organization of silicalite-1 nanoslabs. Adv Space Res, 2003, 32: 259-263
[44]
46 Kirschhock C E A, Ravishankar R, Looveren L V, et al. Mechanism of transformation of precursors into nanoslabs in the early stages of mfi and mel zeolite formation from TPAOH-TEOS-H2O and TBAOH-TEOS-H2O mixtures. J Phys Chem B, 1999, 103: 4972-4978
[45]
47 Kirschhock C E A, Ravishankar R, Jacobs P A, et al. Aggregation mechanism of nanoslabs with zeolite MFI-type structure. J Phys Chem B, 1999, 103: 11021-11027
[46]
48 Kirschhock C E A, Buschmann V, Kremer S, et al. Zeosil nanoslabs: Building blocks in nPr4N+-mediated synthesis of MFI zeolite. Angew Chem Int Ed, 2001, 40: 2637-2640
[47]
49 Knight C T G, Kinrade S D. Comment on “identification of precursor species in the formation of MFI zeolite in the TPAOH-TEOS-H2O system”. J Phys Chem B, 2002, 106: 3329-3332
[48]
50 Kragten D D, Fedeyko J M, Sawant K R, et al. Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles. J Phys Chem B, 2003, 107: 10006-10016
[49]
51 Ramanan H, Kokkoli E, Tsapatsis M. On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1. Angew Chem Int Ed, 2004, 43: 4558-4561
[50]
52 Kirschhock C E A, Liang D, Aerts A, et al. Reply. Angew Chem Int Ed, 2004, 43: 4562-4564
[51]
53 Aerts A, Kirschhock C E A, Martens J A. Methods for in situ spectroscopic probing of the synthesis of a zeolite. Chem Soc Rev, 2010, 39: 4626-4642
[52]
54 Davis T M, Drews T O, Ramanan H, et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat Mater, 2006, 5: 400-408
[53]
55 Drews T O, Tsapatsis M. Model of the evolution of nanoparticles to crystals via an aggregative growth mechanism. Micropor Mesopor Mater, 2007, 101: 97-107
[54]
56 Kumar S, Wang Z, Penn R L, et al. A structural resolution cryo-tem study of the early stages of MFI growth. J Am Chem Soc, 2008, 130: 17284-17286
[55]
57 Yamamoto S, Matsuoka O, Sugiyama S, et al. Surface structure of natural crystals of mordenite as imaged by atomic force microscopy. Chem Phys Lett, 1996, 260: 208-214
[56]
58 Komiyama M, Tsujimichi K, Oumi Y, et al. Ambient atomic force microscopy images of stilbite and their interpretation by molecular simulations. Appl Surf Sci, 1997, 121: 543-547
[57]
59 Komiyama M, Yashima T. Atomic force microscopy images of natural zeolite surfaces observed under ambient conditions. Jpn J Appl Phys, 1994, 33: 3761-3763
[58]
60 Yamamoto S, Sugiyama S, Matsuoka O, et al. AFM imaging of the surface of natural heulandite. Micropor Mesopor Mater, 1998, 21: 1-6
[59]
61 Anderson M W, Agger J R, Thornton J T, et al. Crystal growth in zeolite Y revealed by atomic force microscopy. Angew Chem Int Ed Eng, 1996, 35: 1210-1213
[60]
62 Voltolini M, Artioli G, Moret M. Molecular resolution images of the surfaces of natural zeolites by atomic force microscopy. Micropor Mesopor Mater, 2003, 61: 79-84
[61]
63 Walker A M, Slater B, Gale J D, et al. Predicting the structure of screw dislocations in nanoporous materials. Nat Mater, 2004, 3: 715-720
[62]
64 Lupulescu A I, Rimer J D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science, 2014, 344: 729-732
[63]
65 Dent Glasser L S, Lachowski E E, Cameron G G. Studies on sodium silicate solutions by the method of trimethylsilylation. J Appl Chem Biotechnol, 1977, 27: 39-47
[64]
66 Hoebbel D, Garzó G, Engelhardt G, et al. Ber die silicatanionenkonstitution in tetraethylammoniumsilicaten und ihren w??rigen l?sungen (in German). Z Anorg Allg Chem, 1980, 465: 15-33
[65]
67 Hoebbel D, Garzó G, Engelhardt G, et al. Ber die konstitution und verteilung der silicatanionen in w??rigen tetramethylammonium-silicatl?sungen (in German). Z Anorg Allg Chem, 1982, 494: 31-42
[66]
68 Hoebbel D, Garzó G, Ujszászi K, et al. Herstellung und anionenkonstitution von kristallinen tetramethylammonium-alumosilicaten und -alumosilicatl?sungen (in German). Z Anorg Allg Chem, 1982, 484: 7-21
[67]
69 Hoebbel D, Vargha A, Engelhardt G, et al. Zum anionenaufbau von tetra-n-butylammoniumsilicaten und ihren w??rigen l?sungen (in German). Z Anorg Allg Chem, 1984, 509: 85-94
[68]
70 Harris R K, Knight C T G, Hull W E. Nature of species present in an aqueous solution of potassium silicate. J Am Chem Soc, 1981, 103: 1577-1578
[69]
71 Knight C T G, Balec R J, Kinrade S D. The structure of silicate anions in aqueous alkaline solutions. Angew Chem Int Ed, 2007, 46: 8148-8152
[70]
72 Pelster S A, Weimann B, Schaack B B, et al. Dynamics of silicate species in solution studied by mass spectrometry with isotopically labeled compounds. Angew Chem Int Ed, 2007, 46: 6674-6677
[71]
73 Lim I H, Schrader W, Schüth F. The formation of zeolites from solution-analysis by mass spectrometry. Micropor Mesopor Mater, 2013, 166: 20-36
[72]
74 Fan F, Feng Z, Li G, et al. In situ UV Raman spectroscopic studies on the synthesis mechanism of zeolite X. Chem Eur J, 2008, 14: 5125-5129
[73]
75 Cheng T, Xu J, Li X, et al. Molecular engineering of microporous crystals: (IV) Crystallization process of microporous aluminophosphate AlPO4-11. Micropor Mesopor Mater, 2012, 152: 190-207
[74]
76 Yan W, Song X, Xu R. Molecular engineering of microporous crystals: (I) New insight into the formation process of open-framework aluminophosphates. Micropor Mesopor Mater, 2009, 123: 50-62
[75]
77 Mintova S, Olson N H, Valtchev V, et al. Mechanism of zeolite A nanocrystal growth from colloids at room temperature. Science, 1999, 283: 958-960
[76]
78 Shi J M, Anderson M W, Carr S W. Direct observation of zeolite A synthesis by in situ solid-state NMR. Chem Mater, 1996, 8: 369-375
[77]
79 Taulelle F, Haouas M, Gerardin C, et al. NMR of microporous compounds from in situ reactions to solid paving. Colloid Surf A Physicochem Eng Asp, 1999, 158: 299-311
[78]
80 Grandjean D, Beale A M, Petukhov A V, et al. Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions. J Am Chem Soc, 2005, 127: 14454-14465
[79]
81 Beale A M, van der Eerden A M J, Grandjean D, et al. Monitoring the coordination of aluminium during microporous oxide crystallisation by in situ soft X-ray absorption spectroscopy. Chem Commun, 2006, 4410-4412
[80]
82 Barrer R M. Hydrothermal Chemistry of Zeolites. New York: Academic Press, 1982
[81]
83 Barrer R M. Zeolites and their synthesis. Zeolites, 1981, 1: 130-140
[82]
84 Flanigen E M. A review and new perspectives in zeolite crystallization. In: Meier W M, Uytterhoeven J B, eds. Molecular Sieves. Washington: American Chemical Society, 1973. 119-139
[83]
85 Nakagawa Y, Lee G S, Harris T V, et al. Guest/host relationships in zeolite synthesis: Ring-substituted piperidines and the remarkable adamantane mimicry by 1-azonio spiro[5. undecanes. Micropor Mesopor Mater, 1998, 22: 69-85
[84]
86 Zones S I, Nakagawa Y, Yuen L T, et al. Guest/host interactions in high silica zeolite synthesis: [5.2.1.02. Tricyclodecanes as template molecule. J Am Chem Soc, 1996, 118: 7558-7567
[85]
87 Calabro D C, Cheng J C, Crane J R A, et al. Synthetic porous crystalline MCM-68, its synthesis and use. US Patent, 6049018, 2000-04-11
[86]
88 Dorset D L, Weston S C, Dhingra S S. Crystal structure of zeolite MCM-68: A new three-dimensional framework with large pores. J Phys Chem B, 2006, 110: 2045-2050
[87]
89 Lee G S, Zones S I. Polymethylated [4.1. octanes leading to zeolite SSZ-50. J Solid State Chem, 2002, 167: 289-298
[88]
90 Wilson S T, Lok B M, Messina C A, et al. Aluminophosphate molecular-sieves-a new class of microporous crystalline inorganic solids. J Am Chem Soc, 1982, 104: 1146-1147
[89]
91 Wilson S T, Lok B M, Flanigen E M. Crystalline metallophosphate compositions. US Patent, 4310440, 1982-01-12
[90]
92 Lok B M, Cannan T R, Messina C A. The role of organic molecules in molecular sieve synthesis. Zeolites, 1983, 3: 282-291
[91]
1 Wright P A. Microporous Framework Solids. Cambridge: RSC Publishing, 2008
[92]
2 Xu R R, Pang W Q, Yu J H, et al. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. New York: Wiley Interscience, 2007
[93]
93 Tong X, Xu J, Wang C, et al. Molecular engineering of microporous crystals: (V) Investigation of the structure-directing ability of piperazine in forming two layered aluminophosphates. Micropor Mesopor Mater, 2012, 155: 153-166
[94]
94 Tong X, Xu J, Xin L, et al. Molecular engineering of microporous crystals: (VI) Structure-directing effect in the crystallization process of layered aluminophosphates. Micropor Mesopor Mater, 2012, 164: 56-66
[95]
95 Tong X, Xu J, Li X, et al. Molecular engineering of microporous crystals: (VII) The molar ratio dependence of the structure-directing ability of piperazine in the crystallization of four aluminophosphates with open-frameworks. Micropor Mesopor Mater, 2013, 176: 112-122
[96]
96 Tong X, Xu J, Wang C, et al. The dependence of the structure-directing effect of piperazine and the crystallization pathways of open-framework aluminophosphates on the local environment of the initial mixture. Micropor Mesopor Mater, 2014, 183: 108-116
[97]
97 Lu H, Xu J, Gao P, et al. Molecular engineering of microporous crystals: (VIII) The solvent-dependence of the structure-directing effect of ethylenediamine in the synthesis of open-framework aluminophosphates. Micropor Mesopor Mater, 2015, 208: 105-112
[98]
98 Huang P, Xu J, Wang C, et al. The temperature-dependence of the structure-directing effect of 2-methylpiperazine in the synthesis of open-framework aluminophosphates. RSC Adv, 2014, 4: 39011-39019
[99]
99 Flanigen E M, Patton R L. Silica polymorph and process for preparing same. US Patent, 4073865, 1978-02-14
[100]
100 Guth J L, Kessler H, Wey R. New route to pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions. Stud Surf Sci Catal, 1986, 28: 121-128
[101]
101 Akporiaye D E, Fjellv?g H, Halvorsen E N, et al. Uio-7: A new aluminophosphate phase solved by simulated annealing and high-resolution powder diffraction. J Phys Chem, 1996, 100: 16641-16646
[102]
102 Caullet P, Guth J L, Hazm J, et al. Synthesis, characterization and crystal structure of the new clathrasil phase octadecasil. Eur J Solid State Inorg Chem, 1991, 28: 345-361
[103]
103 Vandegoor G, Freyhardt C C, Behrens P. The cobalticinium cation [Co(iii)(Mu(5)-C5H5)+—A metal-organic complex as a novel template for the synthesis of clathrasils. Z Anorg Allg Chem, 1995, 621: 311-322
[104]
104 Barrett P A, Camblor M A, Corma A, et al. Synthesis and structure of as-prepared ITQ-4, a large pore pure silica zeolite: The role and location of fluoride anions and organic cations. J Phys Chem B, 1998, 102: 4147-4155
[105]
105 Camblor M A, Díaz-Caba?as M-J, Perez-Pariente J, et al. SSZ-23: An odd zeolite with pore openings of seven and nine tetrahedral atoms. Angew Chem Int Ed, 1998, 37: 2122-2126
[106]
106 Price G D, Pluth J J, Smith J V, et al. Crystal structure of tetrapropylammonium fluoride-containing precursor to fluoride silicalite. J Am Chem Soc, 1982, 104: 5971-5977
[107]
107 Balkus J K J, Hargis C D, Kowalak S. Synthesis of NaX zeolites with metallophthalocyanines. In: Bein T, ed. Supramolecular Architecture. Washington: American Chemical Society, 1992. 347-354
[108]
108 Balkus J K J, Ramsaran A, Szostak R, et al. Snythesis and characterization of zeolites prepared using metallocene templates. In: Treacy M M J, Marcus B K, Bisher M E, et al, eds. Proceedings of the 12th International Zeolite Conference. Warrendale: MRS, 1999. 1931-1935
[109]
109 Balkus J K J, Gabrielov A G, Sandler N. Molecular sieve synthesis using metallocenes as structure directing agents. Abstracts Pap Am Chem Soc, 1994, 208: 502
[110]
110 Balkus Jr K J, Biscotto M, Gabrielov A G. The synthesis and characteriztion of UTD-1: The first large pore zeolite based on a 14 membered ring system. Stud Surf Sci Catal, 1997, 105: 415-421
[111]
111 Morgan K, Gainsford G, Milestone N. A novel layered aluminium phosphate [Co(en)3Al3P4O16·3H2O] assembled about a chiral metal complex. J Chem Soc Chem Commun, 1995, (4): 425-426
[112]
112 Yu J, Wang Y, Shi Z, et al. Hydrothermal synthesis and characterization of two new zinc phosphates assembled about a chiral metal complex: [Coii(en)2[Zn6P8O32H8] and [Coiii(en)3][Zn8P6O24Cl]·2H2O. Chem Mater, 2001, 13: 2972-2978
[113]
113 Bruce D A, Wilkinson A P, White M G, et al. The synthesis and characterization of an aluminophosphate with chiral layers; trans-Co(dien)2·Al3P4O16·3H2O. J Solid State Chem, 1996, 125: 228-233
[114]
114 Gray M J, Jasper J D, Wilkinson A P, et al. Synthesis and synchrotron microcrystal structure of an aluminophosphate with chiral layers containing λ tris(ethylenediamine)cobalt(iii). Chem Mater, 1997, 9: 976-980
[115]
115 Fois E, Gamba A, Tilocca A. Structure and dynamics of the flexible triple helix of water inside VPI-5 molecular sieves. J Phys Chem B, 2002, 106: 4806-4812
[116]
116 Schmidt W, Schüth F, Reichert H, et al. VPI-5 and related aluminophosphates: Preparation and thermal stability. Zeolites, 1992, 12: 2-8
[117]
117 De Witte B, Patarin J, Guth J L, et al. Synthesis of mazzite-type zeolites in the presence of organic solvents: Study of the structure directing role of p-dioxane. Micropor Mater, 1997, 10: 247-257
[118]
118 Keijsper J J, Mackay M. Process for preparing a crystalline zeolite. US Patent, 5275799. 1994-01-04
[119]
119 Delprato F, Delmotte L, Guth J L, et al. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 1990, 10: 546-552
[120]
120 Dorset D L, Strohmaier K G, Kliewer C E, et al. Crystal structure of ITQ-26, a 3D framework with extra-large pores. Chem Mater, 2008, 20: 5325-5331
[121]
121 Dorset D L, Kennedy G J, Strohmaier K G, et al. P-derived organic cations as structure-directing agents: Synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel system. J Am Chem Soc, 2006, 128: 8862-8867
[122]
122 Yan W F, Xin L, Olman V, et al. Molecular engineering of microporous crystals: (II) A new method to describe the structures of zeolites and related open-framework crystalline materials. Micropor Mesopor Mater, 2010, 131: 148-161