全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

微孔晶体的晶化

DOI: 10.1360/N972015-00492, PP. 2872-2889

Keywords: 微孔晶体,开放骨架,晶化机理,成核,晶体生长,结构导向效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

从宏观和微观角度简要总结了微孔晶体晶化过程及晶化机理的研究,包括微孔晶体的成核与晶体生长(宏观角度)、晶化机理的主要观点、结构导向效应、研究微孔晶体晶化的主要技术手段及最新的研究思路和策略(微观角度).借鉴于致密晶体晶化行为的研究,微孔晶体的晶化过程分为成核与晶体生长两个阶段.在成核阶段,提出了晶核可以从液相(液相成核)、固相(固相成核)或固液相(双相成核)中成核,后被统一为“通用”成核机制.在晶体生长阶段,研究主要集中于生长模式.受制于当前较低分辨率和灵敏度的表征手段以及合成体系的复杂度,人们对晶体的成核与生长机制的认识还存在着极大的争议.在微孔晶体的晶化过程及晶化机理研究中,一项重要的内容是通过特定的表征手段确认在晶化过程中生成的小结构单元,包括色谱、电喷雾质谱、原位和非原位核磁共振、紫外拉曼光谱等.结合实验数据和理论计算可以确定一些单靠实验数据不能确认的结构单元.在微孔晶体的晶化过程中,结构导向剂起到了极其关键的作用.本文简要总结了结构导向剂的种类和导向的典型结构.最后介绍了新近提出的“反向进化”法,该方法可用于研究在晶化的早期阶段生成的小结构单元及晶化起点的结构.

References

[1]  3 Gibbs J W. On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci, 1873, 3: 108-248
[2]  4 Gibbs J W. On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci, 1874, 3: 343-524
[3]  5 Gibbs J W. The Collected Works of J. Willard Gibbs. New Haven: Yale University Press, 1948
[4]  6 Volmer M. Kinetik der Phasenbildung. Leipzig: Verlag von Theodor Steinkopff, 1939
[5]  7 Becker R, D?ring W. Kinetische behandlung der keimbildung in übers?ttigten d?mpfen. Annalen Der Physik, 1935, 416: 719-752
[6]  8 Mullin J W. Crystallization. Amsterdam: Elsevier Science, 2001
[7]  9 Xu R R, Zhang J M. The mechanism of formation and crystal growth of molecular-sieve-zeolite-(Ⅱ)—The study on nucleation of molecular-sieve-zeolite in a liquid phase by the electron diffraction method (in Chinese). Chem J Chin Univ, 1981, 2: 520-521 [徐如人, 张建民. 沸石分子筛的生成机理和晶体生长(Ⅱ)—电子衍射法研究液相中分子筛晶核的生成. 高等学校化学学报, 1981, 2: 520-
[8]  10 Pope C G. Nucleation and growth theory in zeolite synthesis. Micropor Mesopor Mater, 1998, 21: 333-336
[9]  11 Kerr G T. Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A. J Phys Chem, 1966, 70: 1047-1050
[10]  12 Ciric J. Kinetics of zeolite A crystallization. J Colloid Interface Sci, 1968, 28: 315-324
[11]  13 Zhdanov S P. Some problems of zeolite crystallization. In: Flanigen E M, Sand L B, eds. Molecular Sieve Zeolites-I. Washington D C: American Chemical Society. 1974. 20-43
[12]  14 Angell C L, Flank W H. Mechanism of zeolite A synthesis. In: Katzer J R, ed. Molecular Sieve Zeolites-(Ⅱ). Washington: American Chemical Society, 1977. 194-206
[13]  15 Xu R R, Liu X S. The mechanism of the formation and the crystal growth of molecular-sieve-zeolite (Ⅸ).The liquid phase mechanism of the formation of zeolite K-L (in Chinese). Acta Chim Sin, 1984, 42: 227-232 [徐如人, 刘新生. 沸石分子筛的生成机理与晶体生长(IX)-K-L型沸石生成的液相机理. 化学学报, 1984, 42: 227-
[14]  16 Brunner G O. A proposal for a mechanism of nucleation in zeolite synthesis. Zeolites, 1992, 12: 428-430
[15]  17 Ueda S, Kageyama N, Koizumi M. Crystallization of zeolite Y from solution phase. In: Olson E, Bisio A, eds. Proceedings of the 6th International Conference on Zeolites. Butterworths: Guildford, 1984. 905-913
[16]  18 Pang W Q, Ueda S, Mitsue K. The synthesis of zeolite NaA from homogeneous solutions and studies of its properties. Stud Surf Sci Catal, 1986, 28: 177-184
[17]  19 Pang W Q, Qiu S L, Kan Q B, et al. Synthesis and characterization of FAPO-5 crystallized from clear homogeneous solutions. Stud Surf Sci Catal, 1989, 49: 281-289
[18]  20 Kasahara S, Itabashi K, Igawa K. Clear aqueous nuclei solution for faujasite synthesis. Stud Surf Sci Catal, 1986, 28: 185-192
[19]  21 Houssin C J Y, Mojet B L, Kirschhock C E A, et al. 02-O-01-Small angle X-ray scattering on TPA-silicalite-1 precursors in clear solutions: Influence of silica source and cations. Stud Surf Sci Catal, 2001, 135: 140
[20]  22 Nikolakis V, Vlacho D G, Tsapatsis M. Modeling of zeolite crystallization: The role of gel microstructure. Micropor Mesopor Mater, 1998, 21: 337-346
[21]  23 Smaihi M, Kallus S, Ramsay J D F. In-situ NMR study of mechanisms of zeolite A formation. Stud Surf Sci Catal, 2001, 135: 189
[22]  24 Bronic J, Frontera P, Testa F, et al. 02-P-29-Study of zeolite a crystallization from clear solution by hydrothermal synthesis and population balance simulation. Stud Surf Sci Catal, 2001, 135: 192
[23]  25 Grizzetti R, Artioli G. Kinetics of nucleation and growth of zeolite LTA from clear solution by in situ and ex situ XRPD. Micropor Mesopor Mater, 2002, 54: 105-112
[24]  26 Yu Y, Xiong G, Li C, et al. Characterization of aluminosilicate zeolites by UV-Raman spectroscopy. Micropor Mesopor Mater, 2001, 46: 23-34
[25]  27 Breck D W, Flanigen E M. Molecular Sieves-Proceedings of the 1st International Zeolite Conference. London: Soc Chem Ind, 1968. 49
[26]  28 Breck D W. Crystalline molecular sieves. J Chem Educ, 1964, 41: 678
[27]  29 McNicol B D, Pott G T, Loos K R, et al. Spectroscopic studies of zeolite synthesis: Evidence for a solid-state mechanism. In: Meier W M, Uytterhoeven J B, eds. Molecular Sieves. Washington DC: American Chemical Society, 1973. 152-161
[28]  30 Xu W, Li J, Li W, et al. Nonaqueous synthesis of ZSM-35 and ZSM-5. Zeolites, 1989, 9: 468-473
[29]  31 Huo Q, Xu R. A new route for the synthesis of molecular sieves: Crystallization of AlPO-5 at high temperature. J Chem Soc Chem Commun, 1992, (2): 168-169
[30]  32 Ren L, Wu Q, Yang C, et al. Solvent-free synthesis of zeolites from solid raw materials. J Am Chem Soc, 2012, 134: 15173-15176
[31]  33 Jin Y, Sun Q, Qi G, et al. Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed, 2013, 52: 9172-9175
[32]  34 Serrano D P, Uguina M A, Ovejero G, et al. Evidence of solid-solid transformations during the TS-1 crystallization from amorphous wetness impregnated SiO2-TiO2 xerogels. Micropor Mater, 1996, 7: 309-321
[33]  35 Serrano D P, van Grieken R, Sánchez P, et al. Crystallization mechanism of all-silica zeolite beta in fluoride medium. Micropor Mesopor Mater, 2001, 46: 35-46
[34]  36 Uguina M A, Serrano D P, Ovejero G, et al. TS-2 synthesis from wetness-impregnated SiO2-TiO2 xerogels. Zeolites, 1997, 18: 368-378
[35]  37 Thomas J M, Bursill L A. Amorphous zeolites. Angew Chem Int Ed Eng, 1980, 19: 745-746
[36]  38 Derouane E G, Determmerie S, Gabelica Z, et al. Synthesis and characterization of ZSM-5 type zeolites i. Physico-chemical properties of precursors and intermediates. Appl Catal, 1981, 1: 201-224
[37]  39 Iton L E, Trouw F, Brun T O, et al. Small-angle neutron-scattering studies of the template-mediated crystallization of ZSM-5-type zeolite. Langmuir, 1992, 8: 1045-1048
[38]  40 van Grieken R, Sotelo J L, Menéndez J M, et al. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Micropor Mesopor Mater, 2000, 39: 135-147
[39]  41 Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Micropor Mesopor Mater, 2005, 82: 1-78
[40]  42 Chen B, Huang Y. 17O Solid-state NMR spectroscopic studies of the involvement of water vapor in molecular sieve formation by dry-gel conversion. J Am Chem Soc, 2006, 128: 6437-6446
[41]  43 Burkett S L, Davis M E. Mechanism of structure direction in the synthesis of Si-ZSM-5: An investigation by intermolecular 1H-29Si CP mas NMR. J Phys Chem, 1994, 98: 4647-4653
[42]  44 Kirschhock C E A, Ravishankar R, Verspeurt F, et al. Identification of precursor species in the formation of mfi zeolite in the TPAOH-TEOS-H2O system. J Phys Chem B, 1999, 103: 4965-4971
[43]  45 Kremer S, Theunissen E, Kirschhock C E A, et al. Microgravity effect on the self-organization of silicalite-1 nanoslabs. Adv Space Res, 2003, 32: 259-263
[44]  46 Kirschhock C E A, Ravishankar R, Looveren L V, et al. Mechanism of transformation of precursors into nanoslabs in the early stages of mfi and mel zeolite formation from TPAOH-TEOS-H2O and TBAOH-TEOS-H2O mixtures. J Phys Chem B, 1999, 103: 4972-4978
[45]  47 Kirschhock C E A, Ravishankar R, Jacobs P A, et al. Aggregation mechanism of nanoslabs with zeolite MFI-type structure. J Phys Chem B, 1999, 103: 11021-11027
[46]  48 Kirschhock C E A, Buschmann V, Kremer S, et al. Zeosil nanoslabs: Building blocks in nPr4N+-mediated synthesis of MFI zeolite. Angew Chem Int Ed, 2001, 40: 2637-2640
[47]  49 Knight C T G, Kinrade S D. Comment on “identification of precursor species in the formation of MFI zeolite in the TPAOH-TEOS-H2O system”. J Phys Chem B, 2002, 106: 3329-3332
[48]  50 Kragten D D, Fedeyko J M, Sawant K R, et al. Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles. J Phys Chem B, 2003, 107: 10006-10016
[49]  51 Ramanan H, Kokkoli E, Tsapatsis M. On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1. Angew Chem Int Ed, 2004, 43: 4558-4561
[50]  52 Kirschhock C E A, Liang D, Aerts A, et al. Reply. Angew Chem Int Ed, 2004, 43: 4562-4564
[51]  53 Aerts A, Kirschhock C E A, Martens J A. Methods for in situ spectroscopic probing of the synthesis of a zeolite. Chem Soc Rev, 2010, 39: 4626-4642
[52]  54 Davis T M, Drews T O, Ramanan H, et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat Mater, 2006, 5: 400-408
[53]  55 Drews T O, Tsapatsis M. Model of the evolution of nanoparticles to crystals via an aggregative growth mechanism. Micropor Mesopor Mater, 2007, 101: 97-107
[54]  56 Kumar S, Wang Z, Penn R L, et al. A structural resolution cryo-tem study of the early stages of MFI growth. J Am Chem Soc, 2008, 130: 17284-17286
[55]  57 Yamamoto S, Matsuoka O, Sugiyama S, et al. Surface structure of natural crystals of mordenite as imaged by atomic force microscopy. Chem Phys Lett, 1996, 260: 208-214
[56]  58 Komiyama M, Tsujimichi K, Oumi Y, et al. Ambient atomic force microscopy images of stilbite and their interpretation by molecular simulations. Appl Surf Sci, 1997, 121: 543-547
[57]  59 Komiyama M, Yashima T. Atomic force microscopy images of natural zeolite surfaces observed under ambient conditions. Jpn J Appl Phys, 1994, 33: 3761-3763
[58]  60 Yamamoto S, Sugiyama S, Matsuoka O, et al. AFM imaging of the surface of natural heulandite. Micropor Mesopor Mater, 1998, 21: 1-6
[59]  61 Anderson M W, Agger J R, Thornton J T, et al. Crystal growth in zeolite Y revealed by atomic force microscopy. Angew Chem Int Ed Eng, 1996, 35: 1210-1213
[60]  62 Voltolini M, Artioli G, Moret M. Molecular resolution images of the surfaces of natural zeolites by atomic force microscopy. Micropor Mesopor Mater, 2003, 61: 79-84
[61]  63 Walker A M, Slater B, Gale J D, et al. Predicting the structure of screw dislocations in nanoporous materials. Nat Mater, 2004, 3: 715-720
[62]  64 Lupulescu A I, Rimer J D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science, 2014, 344: 729-732
[63]  65 Dent Glasser L S, Lachowski E E, Cameron G G. Studies on sodium silicate solutions by the method of trimethylsilylation. J Appl Chem Biotechnol, 1977, 27: 39-47
[64]  66 Hoebbel D, Garzó G, Engelhardt G, et al. Ber die silicatanionenkonstitution in tetraethylammoniumsilicaten und ihren w??rigen l?sungen (in German). Z Anorg Allg Chem, 1980, 465: 15-33
[65]  67 Hoebbel D, Garzó G, Engelhardt G, et al. Ber die konstitution und verteilung der silicatanionen in w??rigen tetramethylammonium-silicatl?sungen (in German). Z Anorg Allg Chem, 1982, 494: 31-42
[66]  68 Hoebbel D, Garzó G, Ujszászi K, et al. Herstellung und anionenkonstitution von kristallinen tetramethylammonium-alumosilicaten und -alumosilicatl?sungen (in German). Z Anorg Allg Chem, 1982, 484: 7-21
[67]  69 Hoebbel D, Vargha A, Engelhardt G, et al. Zum anionenaufbau von tetra-n-butylammoniumsilicaten und ihren w??rigen l?sungen (in German). Z Anorg Allg Chem, 1984, 509: 85-94
[68]  70 Harris R K, Knight C T G, Hull W E. Nature of species present in an aqueous solution of potassium silicate. J Am Chem Soc, 1981, 103: 1577-1578
[69]  71 Knight C T G, Balec R J, Kinrade S D. The structure of silicate anions in aqueous alkaline solutions. Angew Chem Int Ed, 2007, 46: 8148-8152
[70]  72 Pelster S A, Weimann B, Schaack B B, et al. Dynamics of silicate species in solution studied by mass spectrometry with isotopically labeled compounds. Angew Chem Int Ed, 2007, 46: 6674-6677
[71]  73 Lim I H, Schrader W, Schüth F. The formation of zeolites from solution-analysis by mass spectrometry. Micropor Mesopor Mater, 2013, 166: 20-36
[72]  74 Fan F, Feng Z, Li G, et al. In situ UV Raman spectroscopic studies on the synthesis mechanism of zeolite X. Chem Eur J, 2008, 14: 5125-5129
[73]  75 Cheng T, Xu J, Li X, et al. Molecular engineering of microporous crystals: (IV) Crystallization process of microporous aluminophosphate AlPO4-11. Micropor Mesopor Mater, 2012, 152: 190-207
[74]  76 Yan W, Song X, Xu R. Molecular engineering of microporous crystals: (I) New insight into the formation process of open-framework aluminophosphates. Micropor Mesopor Mater, 2009, 123: 50-62
[75]  77 Mintova S, Olson N H, Valtchev V, et al. Mechanism of zeolite A nanocrystal growth from colloids at room temperature. Science, 1999, 283: 958-960
[76]  78 Shi J M, Anderson M W, Carr S W. Direct observation of zeolite A synthesis by in situ solid-state NMR. Chem Mater, 1996, 8: 369-375
[77]  79 Taulelle F, Haouas M, Gerardin C, et al. NMR of microporous compounds from in situ reactions to solid paving. Colloid Surf A Physicochem Eng Asp, 1999, 158: 299-311
[78]  80 Grandjean D, Beale A M, Petukhov A V, et al. Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions. J Am Chem Soc, 2005, 127: 14454-14465
[79]  81 Beale A M, van der Eerden A M J, Grandjean D, et al. Monitoring the coordination of aluminium during microporous oxide crystallisation by in situ soft X-ray absorption spectroscopy. Chem Commun, 2006, 4410-4412
[80]  82 Barrer R M. Hydrothermal Chemistry of Zeolites. New York: Academic Press, 1982
[81]  83 Barrer R M. Zeolites and their synthesis. Zeolites, 1981, 1: 130-140
[82]  84 Flanigen E M. A review and new perspectives in zeolite crystallization. In: Meier W M, Uytterhoeven J B, eds. Molecular Sieves. Washington: American Chemical Society, 1973. 119-139
[83]  85 Nakagawa Y, Lee G S, Harris T V, et al. Guest/host relationships in zeolite synthesis: Ring-substituted piperidines and the remarkable adamantane mimicry by 1-azonio spiro[5. undecanes. Micropor Mesopor Mater, 1998, 22: 69-85
[84]  86 Zones S I, Nakagawa Y, Yuen L T, et al. Guest/host interactions in high silica zeolite synthesis: [5.2.1.02. Tricyclodecanes as template molecule. J Am Chem Soc, 1996, 118: 7558-7567
[85]  87 Calabro D C, Cheng J C, Crane J R A, et al. Synthetic porous crystalline MCM-68, its synthesis and use. US Patent, 6049018, 2000-04-11
[86]  88 Dorset D L, Weston S C, Dhingra S S. Crystal structure of zeolite MCM-68: A new three-dimensional framework with large pores. J Phys Chem B, 2006, 110: 2045-2050
[87]  89 Lee G S, Zones S I. Polymethylated [4.1. octanes leading to zeolite SSZ-50. J Solid State Chem, 2002, 167: 289-298
[88]  90 Wilson S T, Lok B M, Messina C A, et al. Aluminophosphate molecular-sieves-a new class of microporous crystalline inorganic solids. J Am Chem Soc, 1982, 104: 1146-1147
[89]  91 Wilson S T, Lok B M, Flanigen E M. Crystalline metallophosphate compositions. US Patent, 4310440, 1982-01-12
[90]  92 Lok B M, Cannan T R, Messina C A. The role of organic molecules in molecular sieve synthesis. Zeolites, 1983, 3: 282-291
[91]  1 Wright P A. Microporous Framework Solids. Cambridge: RSC Publishing, 2008
[92]  2 Xu R R, Pang W Q, Yu J H, et al. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. New York: Wiley Interscience, 2007
[93]  93 Tong X, Xu J, Wang C, et al. Molecular engineering of microporous crystals: (V) Investigation of the structure-directing ability of piperazine in forming two layered aluminophosphates. Micropor Mesopor Mater, 2012, 155: 153-166
[94]  94 Tong X, Xu J, Xin L, et al. Molecular engineering of microporous crystals: (VI) Structure-directing effect in the crystallization process of layered aluminophosphates. Micropor Mesopor Mater, 2012, 164: 56-66
[95]  95 Tong X, Xu J, Li X, et al. Molecular engineering of microporous crystals: (VII) The molar ratio dependence of the structure-directing ability of piperazine in the crystallization of four aluminophosphates with open-frameworks. Micropor Mesopor Mater, 2013, 176: 112-122
[96]  96 Tong X, Xu J, Wang C, et al. The dependence of the structure-directing effect of piperazine and the crystallization pathways of open-framework aluminophosphates on the local environment of the initial mixture. Micropor Mesopor Mater, 2014, 183: 108-116
[97]  97 Lu H, Xu J, Gao P, et al. Molecular engineering of microporous crystals: (VIII) The solvent-dependence of the structure-directing effect of ethylenediamine in the synthesis of open-framework aluminophosphates. Micropor Mesopor Mater, 2015, 208: 105-112
[98]  98 Huang P, Xu J, Wang C, et al. The temperature-dependence of the structure-directing effect of 2-methylpiperazine in the synthesis of open-framework aluminophosphates. RSC Adv, 2014, 4: 39011-39019
[99]  99 Flanigen E M, Patton R L. Silica polymorph and process for preparing same. US Patent, 4073865, 1978-02-14
[100]  100 Guth J L, Kessler H, Wey R. New route to pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions. Stud Surf Sci Catal, 1986, 28: 121-128
[101]  101 Akporiaye D E, Fjellv?g H, Halvorsen E N, et al. Uio-7: A new aluminophosphate phase solved by simulated annealing and high-resolution powder diffraction. J Phys Chem, 1996, 100: 16641-16646
[102]  102 Caullet P, Guth J L, Hazm J, et al. Synthesis, characterization and crystal structure of the new clathrasil phase octadecasil. Eur J Solid State Inorg Chem, 1991, 28: 345-361
[103]  103 Vandegoor G, Freyhardt C C, Behrens P. The cobalticinium cation [Co(iii)(Mu(5)-C5H5)+—A metal-organic complex as a novel template for the synthesis of clathrasils. Z Anorg Allg Chem, 1995, 621: 311-322
[104]  104 Barrett P A, Camblor M A, Corma A, et al. Synthesis and structure of as-prepared ITQ-4, a large pore pure silica zeolite: The role and location of fluoride anions and organic cations. J Phys Chem B, 1998, 102: 4147-4155
[105]  105 Camblor M A, Díaz-Caba?as M-J, Perez-Pariente J, et al. SSZ-23: An odd zeolite with pore openings of seven and nine tetrahedral atoms. Angew Chem Int Ed, 1998, 37: 2122-2126
[106]  106 Price G D, Pluth J J, Smith J V, et al. Crystal structure of tetrapropylammonium fluoride-containing precursor to fluoride silicalite. J Am Chem Soc, 1982, 104: 5971-5977
[107]  107 Balkus J K J, Hargis C D, Kowalak S. Synthesis of NaX zeolites with metallophthalocyanines. In: Bein T, ed. Supramolecular Architecture. Washington: American Chemical Society, 1992. 347-354
[108]  108 Balkus J K J, Ramsaran A, Szostak R, et al. Snythesis and characterization of zeolites prepared using metallocene templates. In: Treacy M M J, Marcus B K, Bisher M E, et al, eds. Proceedings of the 12th International Zeolite Conference. Warrendale: MRS, 1999. 1931-1935
[109]  109 Balkus J K J, Gabrielov A G, Sandler N. Molecular sieve synthesis using metallocenes as structure directing agents. Abstracts Pap Am Chem Soc, 1994, 208: 502
[110]  110 Balkus Jr K J, Biscotto M, Gabrielov A G. The synthesis and characteriztion of UTD-1: The first large pore zeolite based on a 14 membered ring system. Stud Surf Sci Catal, 1997, 105: 415-421
[111]  111 Morgan K, Gainsford G, Milestone N. A novel layered aluminium phosphate [Co(en)3Al3P4O16·3H2O] assembled about a chiral metal complex. J Chem Soc Chem Commun, 1995, (4): 425-426
[112]  112 Yu J, Wang Y, Shi Z, et al. Hydrothermal synthesis and characterization of two new zinc phosphates assembled about a chiral metal complex: [Coii(en)2[Zn6P8O32H8] and [Coiii(en)3][Zn8P6O24Cl]·2H2O. Chem Mater, 2001, 13: 2972-2978
[113]  113 Bruce D A, Wilkinson A P, White M G, et al. The synthesis and characterization of an aluminophosphate with chiral layers; trans-Co(dien)2·Al3P4O16·3H2O. J Solid State Chem, 1996, 125: 228-233
[114]  114 Gray M J, Jasper J D, Wilkinson A P, et al. Synthesis and synchrotron microcrystal structure of an aluminophosphate with chiral layers containing λ tris(ethylenediamine)cobalt(iii). Chem Mater, 1997, 9: 976-980
[115]  115 Fois E, Gamba A, Tilocca A. Structure and dynamics of the flexible triple helix of water inside VPI-5 molecular sieves. J Phys Chem B, 2002, 106: 4806-4812
[116]  116 Schmidt W, Schüth F, Reichert H, et al. VPI-5 and related aluminophosphates: Preparation and thermal stability. Zeolites, 1992, 12: 2-8
[117]  117 De Witte B, Patarin J, Guth J L, et al. Synthesis of mazzite-type zeolites in the presence of organic solvents: Study of the structure directing role of p-dioxane. Micropor Mater, 1997, 10: 247-257
[118]  118 Keijsper J J, Mackay M. Process for preparing a crystalline zeolite. US Patent, 5275799. 1994-01-04
[119]  119 Delprato F, Delmotte L, Guth J L, et al. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 1990, 10: 546-552
[120]  120 Dorset D L, Strohmaier K G, Kliewer C E, et al. Crystal structure of ITQ-26, a 3D framework with extra-large pores. Chem Mater, 2008, 20: 5325-5331
[121]  121 Dorset D L, Kennedy G J, Strohmaier K G, et al. P-derived organic cations as structure-directing agents: Synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel system. J Am Chem Soc, 2006, 128: 8862-8867
[122]  122 Yan W F, Xin L, Olman V, et al. Molecular engineering of microporous crystals: (II) A new method to describe the structures of zeolites and related open-framework crystalline materials. Micropor Mesopor Mater, 2010, 131: 148-161

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133