38 Sundramoorthy A K, Mesgari S, Wang J, et al. Scalable and effective enrichment of semiconducting single-walled carbon nanotubes by a dual selective naphthalene-based azo dispersant. J Am Chem Soc, 2013, 135: 5569-5581
[2]
39 Xu W, Zhao J, Qian L, et al. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale, 2014, 6: 1589-1595
[3]
40 Wang H, Koleilat G I, Liu P, et al. High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors. ACS Nano, 2014, 8: 2609-2617
[4]
41 Park S, Lee H W, Wang H L, et al. Highly effective separation of semiconducting carbon nanotubes verified via short-channeldevices fabricated using dip-pen nanolithography. ACS Nano, 2012, 6: 2487-2496
[5]
42 Brady G J, Joo Y, Wu M Y, et al. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano, 2014, 8: 11614-11621
[6]
43 Engel M, Small J P, Steiner M, et al. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano, 2008, 2: 2445-2452
[7]
44 Wu J, Xie L M, Hong G S, et al. Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes. Nano Res, 2012, 5: 388-394
[8]
1 Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
[9]
2 Zhang H, Wu B, Hu W. Separation and/or selective enrichment of single-walled carbon nanotubes. Chem Soc Rev, 2011, 40: 1324-1336
[10]
3 Hong G, Zhang B, Peng B, et al. Direct growth of semiconducting single-walled carbon nanotube array. J Am Chem Soc, 2009, 131: 14642-14643
[11]
4 Zhang S, Hu Y, Wu J, et al. Selective scission of C-O and C-C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J Am Chem Soc, 2015, 137: 1012-1015
[12]
5 Kang L, Hu Y, Liu L, et al. Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett, 2015, 15: 403-409
[13]
6 Qin X, Peng F, Yang F, et al. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports. Nano Lett, 2014, 14: 512-517
[14]
7 He M, Jiang H, Liu B, et al. Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci Rep, 2013, 3: 1460
[15]
8 Yang F, Wang X, Zhang D, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510: 522-524
[16]
9 Li W S, Hou P X, Liu C, et al. High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors. ACS Nano, 2013, 7: 6831-6839
[17]
10 Li J, Ke C T, Liu K, et al. Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano, 2014, 8: 8564-8572
[18]
11 Liu D, Zhang J. Separation methods of single-walled carbon nanotubes (in Chinese). Chin Sci Bull (Chin Ver), 2014, 59: 3240-3263 [刘丹, 张锦. 单壁碳纳米管的分离方法. 科学通报, 2014, 59: 3240-
[19]
12 Krupke R, Hennrich F, Lohneysen H, et al. Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 2003, 301: 344-347
[20]
13 Tanaka T, Jin H H, Miyata Y, et al. High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl Phys Express, 2008, 1: 114001
[21]
14 Mesgari S, Poon Y F, Yan L Y, et al. High selectivity cum yield gel electrophoresis separation of single-walled carbon nanotubes using a chemically selective polymer dispersant. J Phys Chem C, 2012, 116: 10266-10273
[22]
15 Mesgari S, Poon Y F, Wang Y L, et al. Polymer removal from electronic grade single-walled carbon nanotubes after gel electrophoresis. J Mater Chem C, 2013, 1: 6813-6823
[23]
16 Shin D H, Kim J E, Shim H C, et al. Continuous extraction of highly pure metallic single-walled carbon nanotubes in a microfluidic channel. Nano Lett, 2008, 8: 4380-4385
[24]
17 Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol, 2006, 1: 60-65
[25]
18 Antaris A L, Seo J W, Green A A, et al. Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. ACS Nano, 2010, 4: 4725-4732
[26]
19 Yanagi K, Iitsuka T, Fujii S, et al. Separations of metallic and semiconducting carbon nanotubes by using sucrose as a gradient medium. J Phys Chem C, 2008, 112: 18889-18894
[27]
20 Feng Y, Miyata Y, Matsuishi K, et al. High-efficiency separation of single-wall carbon nanotubes by self-generated density gradient ultracentrifugation. J Phys Chem C, 2011, 115: 1752-1756
[28]
21 An L, Fu Q, Lu C, et al. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J Am Chem Soc, 2004, 126: 10520-10521
[29]
22 Kamaras K, Itkis M E, Hu H, et al. Covalent bond formation to a carbon nanotube metal. Science, 2003, 301: 1501
[30]
23 Chattopadhyay D, Galeska I, Papadimitrakopoulos F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J Am Chem Soc, 2003, 125: 3370-3375
[31]
24 Maeda Y, Kimura S, Kanda M, et al. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc, 2005, 127: 10287-10290
[32]
25 Li H, Zhou B, Lin Y, et al. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc, 2004, 126: 1014-1015
[33]
26 Nepal D, Geckeler K E. Proteins and carbon nanotubes: Close encounter in water. Small, 2007, 3: 1259-1265
[34]
27 Tange M, Okazaki T, Iijima S. Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly (9,9-dioctylfluorene-alt-benzothiadiazole). J Am Chem Soc, 2011, 133: 11908-11911
[35]
28 Li H, Zhang F, Qiu S, et al. Designing large-plane conjugated copolymers for the high-yield sorting of semiconducting single-walled carbon nanotubes. Chem Commun, 2013, 49: 10492-10494
[36]
29 Feng J L, Alam S M, Yan L Y, et al. Sorting of single-walled carbon nanotubes based on metallicity by selective precipitation with polyvinylpyrrolidone. J Phys Chem C, 2011, 115: 5199-5206
[37]
30 Tanaka T, Urabe Y, Nishide D, et al. Continuous separation of metallic and semiconducting carbon nanotubes using agarose gel. Appl Phys Express, 2009, 2: 125002
[38]
31 Liu H, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, 2011, 2: 309
[39]
32 Miyata Y, Shiozawa K, Asada Y, et al. Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res, 2011, 4: 963-970
[40]
33 Khripin C Y, Fagan J A, Zheng M. Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J Am Chem Soc, 2013, 135: 6822-6825
[41]
34 Fagan J A, Khripin C Y, Batista C A S, et al. Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv Mater, 2014, 26: 2800-2804
[42]
35 Subbaiyan N K, Cambre S, Parra-Vasquez A N, et al. Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation. ACS Nano, 2014, 8: 1619-1628
[43]
36 Gui H, Streit J K, Fagan J A, et al. Redox sorting of carbon nanotubes. Nano Lett, 2015, 15: 1642-1646
[44]
37 Durkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 2004, 4: 35-39