77 Lee C H, Guo Y L, Tsai P J, et al. Fatal acute pulmonary oedema after inhalation of fumes from polytetrafluoroethylene (PTFE). Eur Respir J, 1997, 10: 1408-1411
[2]
78 Johnston C J, Finkelstein J N, Mercer P, et al. Pulmonary effects induced by ultrafine PTFE particles. Toxicol Appl Pharmacol, 2000, 168: 208-215
[3]
79 Zhu M T, Feng W Y, Wang B, et al. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology, 2008, 247: 102-111
[4]
80 Ge C, Meng L, Xu L, et al. Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology, 2012, 6: 526-542
[5]
81 M?ller W, Felten K, Sommerer K, et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med, 2008, 177: 426-432
[6]
82 Ferin J, Oberd?rster G, Penney D P. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol, 1992, 6: 535-542
[7]
83 Jefferson D A. The surface activity of ultrafine particles. Philos Trans R Soc Lond A, 2000, 358: 2683-2692
[8]
84 Preining O J. The physical nature of very, very small particles and its impact on their behaviour. Aerosol Sci, 1998, 29: 481-495
[9]
85 Semmler M, Seitz J, Erbe F, et al. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transienttranslocation into secondary organs. Inhal Toxicol, 2004, 16: 453-459
[10]
86 Oberd?rster G, Cox C, Gelein R. Intratracheal instillation versus intratracheal-inhalation of tracer particles for measuring lung clearance function. Exp Lung Res, 1997, 23: 17-34
[11]
87 Hahn F F, Newton G J, Bryant P L. In vitro phagocytosis of respirable-sized monodisperse particles by alveolar macrophages. In: Sanders C L, Schneider R P, Dagle G E, et al, eds. Pulmonary macrophages and epithelial cells. ERDA Series 43. Oak Ridge, TN: Technical Information Center, Energy Research and Development Administration, 1977. 424-436
[12]
88 Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials, 1988, 9: 356-362
[13]
89 Green T R, Fisher J, Stone M, et al. Polyethylene particles of a “critical size” are necessary for the induction of cytokines by macrophages in vitro. Biomaterials, 1998, 19: 2297-2302
[14]
90 Schürch S, Gehr P, Im Hof V, et al. Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol, 1990, 80: 17-32
[15]
91 Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect, 2003, 111: 455-460
[16]
1 Dockery D W, Pope C A, Xu X, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med, 1993, 329: 1753-1759
[17]
2 Pope C A, Thun M J, Namboodiri M M, et al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med, 1995, 151: 669-674
[18]
3 Pope C A, Burnett R T, Thun M J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposureair to fine particulate air pollution. JAMA, 2002, 287: 1132-1141
[19]
4 Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 Europen cohorts within the multicenter ESCAPE project. Lancet, 2014, 383: 785-795
[20]
5 Brook R D, Rajagopalan S, Pope C A, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 2010, 121: 2331-2378
[21]
6 Rückerl R, Schneider A, Breitner S, et al. Health effects of particulate air pollution: A review of epidemiological evidence. Inhal Toxicol, 2011, 23: 555-592
[22]
7 United States Environmental Protection Agency. Integrated Science Assessment for Particulate Matter. December 2009, EPA/600/R-08/139F
[23]
8 Kumar P, Morawska L, Birmili W, et al. Ultrafine particles in cities. Environ Int, 2014, 66: 1-10
[24]
9 Drinker P, Thomson R M, Finn J L. Metal fume fever: IV. Threshold doses of zinc oxide, preventive measures, and the chronic effects of repeated exposures. J Ind Hyg, 1927, 9: 331-345
[25]
10 Gardner L U. General tissue responses to various kinds of mineral particles. In: Lanza A J, ed. Silicosis and Asbestosis. New York: Oxford University Press, 1938. 277-282
[26]
11 de Lorenzo A J D. The olfactory neuron and the blood-brain barrier. Chapter 9. In: Wolstenholme G E W, Knight J, eds. Taste and Smell in Vertebrates. London: J. & A. Churchill, 1970. 151-176
[27]
12 Whitby K T, Clark W E, Marple V A, et al. Characterization of California aerosols. 1: Size distrituibitions of freeway aerosol. Atmos Environ, 1975, 9: 463-482
[28]
13 Lam H F, Chen L C, Ainsworth D, et al. Pulmonary function of guinea pigs exposed to freshly generated ultrafine zinc oxide with and without spike concentrations. Am Ind Hyg Assoc J, 1988, 49: 333-341
[29]
14 Oberdorster G, Stone V, Donaldson K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 2007, 1: 2-25
[30]
15 Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 2005, 113: 823-839
[31]
16 Kreyling W G, Semmler-Behnke M, Takenaka S, et al. Differences in the biokinetics of inhaled nano-versus micrometer-sized particles. Acc Chem Res, 2013, 46: 714-722
[32]
17 Zhu M T, Nie G J, Meng H, et al. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res, 2013, 46: 622-631
[33]
18 Wang B, He X, Zhang Z Y, et al. Metabolism of nanomaterials in vivo: Blood circulation and organ clearance. Accounts Chem Res, 2013, 46: 761-769
[34]
19 Zhu M T, Li Y Y, Shi J, et al. Exosomes as extrapulmonary signaling conveyors for nanoparticle-induced systemic immune activation. Small, 2012, 8: 404-412
[35]
20 Che H Z, Zhang X Y, Li Y, et al. Haze trends over the capital cities of 31 provinces in China, 1981-2005. Theor Appl Climatol, 2009, 97: 235-242
[36]
21 Chen Y, Ebenstein A, Greenstone M, et al. Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy. Proc Natl Acad Sci USA, 2013, 110: 12936-12941
[37]
22 Lim S S, Vos T, Flaxman A D, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380: 2224-2260
[38]
23 He H, Wang X M, Wang Y S, et al. Formation mechanism and control strategies of haze in China (in Chinese). Bull Chin Acad Sci, 2013, 28: 344-352 [贺泓, 王新明, 王跃思, 等. 大气灰霾追因与控制. 中国科学院院刊, 2013, 28: 344-
[39]
24 Nel A, Xia T, M?dler L, et al. Toxic potential of materials at the nanolevel. Science, 2006, 311: 622-627
[40]
25 Nel A E, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater, 2009, 8: 543-557
[41]
26 Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small, 2008, 4: 26-49
[42]
27 Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect, 2003, 111: 455-460
[43]
28 H?hr D, Steinfartz Y, Schins R P, et al. The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat. Int J Hyg Environ Health, 2002, 205: 239-244
[44]
29 Rohman Q, Lohani M, Dopp E, et al. Evidence that ultrafine titanium oxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect, 2002, 110: 797-800
[45]
30 Oberd?rster G, Ferin J, Lehnert B E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect, 1994, 102: 173-179
[46]
31 Kumar P, Fennell P, Hayhurst A, et al. Street versus roof top level concentrations of fine particles in a Cambridge street canyon. Bound-Layer Meteorol, 2009, 131: 3-18
[47]
32 US EPA. Air quality criteria for particulate matter. Washington DC 20460: Office of Research and Development, 2004
[48]
33 Chen Z, Meng H, Xing G, et al. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol, 2008, 42: 8985-8992
[49]
34 Dominici F, Peng R D, Bell M L, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 2006, 295: 1127-1134
[50]
35 Exposure to air pollution (particulate matter) in outdoor air. Copenhagen, WHO Regional Office for Europe, 2011 (ENHIS Factsheet 3.3) (http://www.euro.who.int/_data/assets/pdf_file/0018/97002/ENHIS_Factsheet_3.3_July_2011.pdf, assessed 28 October 2012)
[51]
36 Grigg J. Particulate matter exposure in children. Proc Am Thorac Soc, 2009, 6: 564-569
[52]
37 Halonen J I, Lanki T, Yli-Tuomi T, et al. Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology, 2009, 20: 143-153
[53]
38 Andersen Z J, Loft S, Ketzel M, et al. Ambient air pollution triggers wheezing symptoms in infants. Thorax, 2008, 63: 710-716
[54]
39 Von Klot S, W?lke G, Tuch T, et al. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Resp J, 2002, 20: 691-702
[55]
40 Kim J L, Elfman L, Wieslander G, et al. Respiratory health among Korean pupils in relation to home, school and outdoor environment. J Koren Med Sci, 2011, 26: 166-173
[56]
41 Andersen Z J, Wahlin P, Raaschou-Nielsen O, et al. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen Denmark. Occup Environ Med, 2008, 65: 458-466
[57]
42 Halonen J I, Lanki T, Yli-Tuomi T, et al. Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax, 2008, 63: 635-641
[58]
43 Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol, 2010, 7: 2
[59]
44 Kreyling W G, Semmler-Behnke M, M?ller W. Ultrafine particle-lung interactions: Does size matter? J Aerosol Med, 2006, 19: 74-83
[60]
45 HEI Review Panel on Ultrafine Particles. Understanding the health effects of ambient ultrafine particles. HEI Perspectives 3. Boston, mA: Health Effects Institute, 2013
[61]
46 Breitner S, Liu L, Cyrys J, et al. Sub-micrometer particulate air pollution and cardiovascular mortality in Beijing, China. Sci Total Environ, 2011, 409: 5196-5204
[62]
47 St?lzel M, Breitner S, Cyrys J, et al. Daily mortality and particulate matter in different size classes in Erfurt, Germany. J Expo Sci Environ Epidemiol, 2007, 17: 458-467
[63]
48 Forastiere F, Stafoggia M, Picciotto S, et al. A casecrossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am J Respir Crit Care Med, 2005, 172: 1549-1555
[64]
49 Atkinson R W, Fuller G W, Anderson H R, et al. Urban ambient particle metrics and health: A time-series analysis. Epidemiology, 2010, 21: 501-511
[65]
50 Kettunen J, Lanki T, Tiittanen P, et al. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke, 2007, 38: 918-922
[66]
51 Brani?M, Vyskovska J, Maly M, et al. Association of size-resolved number concentrations of particulate matter with cardiovascular and respiratory hospital admissions and mortality in Prague, Czech Republic. Inhal Toxicol, 2010, 22: 21-28
[67]
52 Sanchez-Crespo A, Klepczynska-Nystrom A, Lundin A, et al. 111Indium-labeled ultrafine carbon particles; a novel aerosol for pulmonary deposition and retention studies. Inhal Toxicol, 2011, 23: 121-128
[68]
53 Sannolo N, Lamberti M, Pedata P. Human health effects of ultrafine particles. Giornale Italiano di Medicina del Lavoro ed Ergonomia, 2010, 32(Suppl 4): 348-351
[69]
54 Strak M, Boogaard H, Meliefste K, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med, 2010, 67: 118-124
[70]
55 Ibald-Mulli A, Wichmann H E, Kreyling W, et al. Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med, 2002, 15: 189-201
[71]
56 Delfino R J, Sioutas C, Malik S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Perspec, 2005, 113: 934-946
[72]
57 Chuang K J, Chan C C, Chen N T, et al. Effects of particle size fractions on reducing heart rate variability in cardiac and hypertensive patients. Environ Health Perspect, 2005, 113: 1693-1697
[73]
58 Lanki T, Pekkanen J, Aalto P, et al. Associations of traffic related air pollutants with hospitalisation for first acute myocardial infarction: the HEAPSS study. Occup Environ Med, 2006, 63: 844-851
[74]
59 Andersen Z J, Olsen T S, Andersen K K, et al. Association between short-term exposure to ultrafine particles and hospital admissions for stroke in Copenhagen, Denmark. Eur Heart J, 2010, 31: 2034-2040
[75]
60 Kang X, Li N, Wang M, et al. Adjuvant effects of ambient particulate matter monitored by proteomics of bronchoalveolar lavage fluid. Proteomics, 2010, 10: 520-531
[76]
61 Park E J, Choi K, Park K. Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Arch Pharm Res, 2011, 34: 299-307
[77]
62 Wang L, Wang L, Ding W, et al. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol, 2010, 10: 8617-8624
[78]
63 James A C, Stahlhofen W, Rudolf G, et al. Deposition of inhaled particles. In: Smith H, ed. International Commission on Radiological Protection (ICRP) Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Oxford: Pergamon Press. Ann ICRP 1994, 24: 1-3
[79]
64 Oberdorster G, Utell M J. Ultrafine particles in the urban air: To the respiratory tract-and beyond? Environ Health Perspect, 2002, 110: A440-A441
[80]
65 Chalupa D C, Morrow P E, Oberdorster G, et al. Ultrafine particle deposition in subjects with asthma. Environ Health Perspec, 2004, 112: 879-882
[81]
66 Anderson P J, Wilson J D, Hiller F C. Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest, 1990, 97: 1115-1120
[82]
67 Brown J S, Zeman K L, Bennett W D. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med, 2002, 166: 1240-1247
[83]
68 Salvi S, Blomberg A, Rudell B, et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med, 1999, 159: 702-709
[84]
69 Donaldson K, Brown D, Clouter A, et al. The pulmonary toxicology of ultrafine particles. Aerosol Med, 2002, 15: 213
[85]
70 Peters A, Wichmann H E, Tuch T, et al. Respiratory effects are associated with the number of ultrafine particles. Circulation, 2004, 110: 1670-1677
[86]
71 Vedal S, Campen M J, McDonald J D, et al. National Particle Component Toxicity (NPACT) initiative report on cardiovascular effects. Res Rep Health Eff Inst, 2013, 5-8
[87]
72 Pope C A, Muhlestein J B, May H T, et al. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation, 2006, 114: 2443-2448
[88]
73 Halonen J, Lanki T, Yli-Tuomi T, et al. Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax, 2008, 63: 635-641
[89]
74 McCreanor J, Cullinan P, Nieuwenhuijsen M J, et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med, 2007, 357: 2348-2358
[90]
75 Gong H Jr, Linn W S, Clark K W, et al. Exposures of healthy and asthmatic volunteers to concentrated ambient ultrafine particles in Los Angeles. Inhal Toxicol, 2008, 20: 533-545
[91]
76 Pietropaoli A P, Frampton M W, Hyde R W, et al. Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol, 2004, 16: 59-72
[92]
92 Driscoll K E, Deyo L C, Carter J M, et al. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis, 1997, 18: 423-430
[93]
93 Brown D M, Wilson M R, MacNee W, et al. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol, 2001, 175: 191-199
[94]
94 Stone V, Shaw J, Brown D M, et al. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol Vitro, 1998, 12: 649-659
[95]
95 Oberd?rster G, Yu C P. Lung dosimetry-considerations for noninhalation studies. Exp Lung Res, 1999, 25: 1-6
[96]
96 Nemmar A, Hoet P H, Vanquickenborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation, 2002, 105: 411-414
[97]
97 Millers N L, Amin N, Robinson S D, et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med, 2006, 173: 426-431
[98]
98 Oberd?rster G, Sharp Z, Atudorei V, et al. Extrapulmonry translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A, 2002, 65: 1531-1543
[99]
99 Kreyling W G, Sharp Z, Atudorei V, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A, 2002, 65: 1513-1530
[100]
100 Kreyling W G, Semmler-Behnke M, Seitz J, et al. Size dependence of the translocation. Inhal Toxicol, 2009, 21(Suppl 1): 55-60
[101]
101 Takenaka S, Karg E, Kreyling W G, et al. Distribution pattern of inhaled ultrafine gold particle in the rat lung. Inhal Toxicol, 2006, 18: 733-740
[102]
102 Terzano C, Di Stefano F, Conti V, et al. Air pollution ultrafine particles: Toxicity beyond the lung. Eur Rev Med Pharmacol Sci, 2010, 14: 809-821
[103]
103 Zareba W, Couderc J P, Oberd?rster G, et al. ECG parameters and exposure to carbon ultrafine particles in young healthy subjects. Inhal Toxicol, 2009, 21: 223-233
[104]
104 Laumbach R J, Kipen H M, Ko S, et al. A controlled trial of acute effects of human exposure to traffic particles on pulmonary oxidative stress and heart rate variability. Part Fibre Toxicol, 2014, 11: 45
[105]
105 Mills N L, Amin N, Robinson S D, et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med, 2006, 173: 426-431
[106]
106 Lundb?ck M, Mills N L, Lucking A, et al. Experimental exposure to diesel exhaust increases arterial stiffness in man. Part Fibre Toxicol, 2009, 6: 7
[107]
107 Tornqvist H, Mills N L, Gonzalez M, et al. Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am J Respir Crit Care Med, 2007, 176: 395-400
[108]
108 Stewart J C, Chalupa D C, Devlin R B, et al. Vascular effects of ultrafine particles in persons with type 2 diabetes. Environ Health Perspect, 2010, 118: 1692-1698
[109]
109 Nemmar A, Subramaniyan D, Yasin J, et al. Impact of experimental type 1 diabetes mellitus on systemic and coagulation vulnerability in mice acutely exposed to diesel exhaust particles. Part Fibre Toxicol, 2013, 10: 14
[110]
110 Rückerl R, Phipps R P, Schneider A, et al. Ultrafine particles and platelet activation in patients with coronary heart disease—Results from a prospective panel study. Part Fibre Toxicol, 2007, 4: 1
[111]
111 Ge C C, Du J F, Zhao L N, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA, 2011, 108: 16968-16973
[112]
112 Wang L M, Li J Y, Pan J, et al. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: Understanding the reduced damage in cell membranes. J Am Chem Soc, 2013, 135: 17359-17368
[113]
113 Wolfram J, Yang Y, Shen J L, et al. The nano-plasma interface: Implications of the protein corona. Colloid Surface B, 2014, 124: 17-24
[114]
114 Zuo G H, Kang S G, Xiu P, et al. Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at molecular level. Small, 2013, 9: 1546-1556
[115]
115 Peters A, D?ring A, Wichmann H E, et al. Increased plasma viscosity during an air pollution episode: A link to mortality? Lancet, 1997, 349: 1582-1587
[116]
116 Harder V, Gilmour P, Lentner B, et al. Cardiovascular responses in unrestrained WKY rats to inhaled ultrafine carbon particles. Inhal Toxicol, 2005, 17: 29-42
[117]
117 Nemmar A, Hoylaerts M F, Hoet P H, et al. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med, 2002, 166: 998-1004
[118]
118 Araujo J A, Barajas B, Kleinman M, et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res, 2008, 102: 589-596
[119]
119 Li R, Navab M, Pakbin P, et al. Ambient ultrafine particles alter lipid metabolism and HDL and anti-oxidant capacity in LDLR-null mice. J Lipid Res, 2013, 54: 1608-1615
[120]
120 Wang J X, Chen C Y, Liu Y, et al. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett, 2008, 183: 72-80
[121]
121 Wang J X, Zhou G Q, Chen C Y, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett, 2007, 168: 176-185
[122]
122 Meng H, Chen Z, Xing G M, et al. Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles. Toxicol Lett, 2007, 175: 102-110
[123]
123 Chen Z, Meng H, Xing G M, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett, 2006, 163: 109-120
[124]
124 Wang B, Feng W Y, Wang T C, et al. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett, 2006, 161: 115-123
[125]
125 Wang B, Feng W Y, Wang M, et al. Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res, 2008, 10: 263-276
[126]
126 Wang J X, Liu Y, Jiao F, et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology, 2008, 254: 82-90
[127]
127 Wang B, Feng W Y, Zhu M T, et al. Neurotoxicity of low-dose repeatedly intranasal instillation of nano-and submicron-sized ferric oxide particles in mice. J Nanopart Res, 2009, 11: 41-53
[128]
128 Oberd?rster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol, 2004, 16: 437-445
[129]
129 Zhang W D, Wang C, Li Z J, et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater, 2012, 24: 5391-5397
[130]
130 Yan L, Gu Z J, Zhao Y L. Chemical mechanisms of toxicological property of nanomaterials: Intracellular ROS generation. Chem Asian J, 2013, 8: 2342-2353
[131]
131 Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita, 2003, 39: 405-410
[132]
132 Driscoll K E, Carter J M, Hassenbein D G, et al. Cytokines and particle-induced inflammatory cell recruitment. Environ Health Perspect, 1997, 105: 1159-1164
[133]
133 Simkhovich B Z, Kleinman M T, Kloner R A. Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms. J Am Coll Cardiol, 2008, 52: 719-726
[134]
134 Imrich A, Ning Y, Lawrence J, et al. Alveolar macrophage cytokine response to air pollution particles: Oxidant mechanisms. Toxicol Appl Pharmacol, 2007, 218: 256-264
[135]
135 Sijan Z, Antkiewicz D S, Heo J, et al. An in vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter. Environ Toxicol, 2015, 30: 836-851
[136]
136 Baccarelli A, Martinelli I, Pegoraro V, et al. Living near major traffic roads and risk of deep vein thrombosis. Circulation, 2009, 119: 3118-3124
[137]
137 Baccarelli A, Zanobetti A, Martinelli I, et al. Effects of exposure to air pollution on blood coagulation. J Thromb Haemost, 2007, 5: 252-260
[138]
138 Wu Z, Hu M, Lin P, et al. Particle number size distribution in the urban atmosphere of Beijing, China. Atmos Environ, 2008, 42: 7967-7980
[139]
139 IARC: DIESEL ENGINE EXHAUST CARCINOGENIC, International Agency for Research on Cancer, World health Organization, 12 June 2012, http://www.iarc.fr/en/media-centre/pr/2012/pdfs/pr213_E.pdf, obtained on Dec 22, 2014
[140]
140 Wang B, Yin J J, Zhou X Y, et al. Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: Catalytic activities mediated by surface chemical states. J Phys Chem C, 2013, 117: 383-392
142 Chen R, Huo L L, Shi X F, et al. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano, 2014, 8: 2562-2574
[143]
143 Liu Y, Zhao Y L, Sun B Y, et al. Understanding the toxicity of carbon nanotubes. Acc Chem Res, 2013, 46: 702-713
[144]
144 Chen C Y, Li Y F, Qu Y, et al. Advanced nuclear analytical and related techniques for the growing challenges of nanotoxicology. Chem Soc Rev, 2013, 42: 8266-8303
[145]
145 Qu Y, Li W, Zhou Y, et al. Full assessment of fate and physiological behavior of quantum dots utilizing caenorhabditis elegans as a model organism. Nano Lett, 2011, 11: 3174-3183
[146]
146 Wang H F, Wang J, Deng X Y, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol, 2004, 4: 1019-1024
[147]
147 Ge C C, Lao F, Li W, et al. Quantitative analysis of metal impurities in carbon nanotubes: Efficacy of different pretreatment protocols for icpms spectroscopy. Anal Chem, 2008, 80: 9426-9434
[148]
148 Wang M, Feng W Y, Lu W, et al. Quantitative analysis of proteins via sulfur determination by hplc coupled to isotope dilution icpms with a hexapole collision cell. Anal Chem, 2007, 79: 9128-9134
[149]
149 Liu Y, Huang C Z. Single scattering particles based analytical techniques. Chin Sci Bull, 2013, 58: 1969-1979