全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

饮食对自闭症的影响研究进展

DOI: 10.1360/N972015-00355, PP. 2845-2861

Keywords: 自闭症,饮食,益生菌肠道微生物,菌肠脑轴

Full-Text   Cite this paper   Add to My Lib

Abstract:

自闭症是一种发育障碍类疾病,患者常出现严重的行为异常,丧失语言能力和社会交往能力,生活基本不能自理,并且可能需要持续一生的治疗.随着发病率的攀升,自闭症已经给患者家庭和社会造成了严重的社会和经济负担.自闭症的病因和机理尚未完全明晰,尚缺有效的治疗或干预方法.目前的研究表明,饮食与自闭症关系密切,不良的饮食习惯,食物中的有害物质,对营养物质的吸收、利用和代谢异常,可能影响免疫、内分泌和能量代谢系统,最终影响大脑的发育.食物是肠道微生物的重要影响因素,而肠道微生物对人体健康至关重要,且通过微生物-肠道-脑轴(菌肠脑轴)影响大脑的正常工作和发育.食物中的营养、促生长物质及本身负载的微生物为肠道微生物的生长和组成提供了充足的物质基础.饮食干预不仅能改善自闭症患者的营养状况,还能缓解一些胃肠道症状以及睡眠、刻板、自残、多动和暴躁等异常行为,甚至社交和语言能力等也有所好转.其中,给自闭症患者服用益生菌,在明显改善患者的肠道菌群的同时,自闭症症状得以改善.因此,将肠道微生物作为自闭症的诊断和干预靶标正在引起广泛关注,饮食、肠道微生物与自闭症的关系正在成为当前的研究热点.

References

[1]  1 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington: American Psychiatric Publishing, 2013
[2]  2 Baron-Cohen S, Scott F J, Allison C, et al. Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry, 2009, 194: 500-509
[3]  3 Kim Y S, Leventhal B L, Koh Y J, et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry, 2011, 168: 904-912
[4]  4 Blumberg S J, Bramlett M D, Kogan M D, et al. Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011-2012. Natl Health Stat Report, 2013, 65: 1-11
[5]  5 Guo H, Hu Z M, Xia K. Progress of the genetic etiology of autism spectrum disorders and the proposed genotype and phenotype correlation project (in Chinese). Chin Bull Life Sci, 2014, 26: 571-582 [郭辉, 胡正茂, 夏昆. 孤独症的遗传病因学研究进展及基因型-表型关联研究计划. 生命科学, 2014, 26: 571-
[6]  6 Harvard School of Public Health (HSPH). Autism has high costs to U.S. society. HSPH, 2006, http://archive.sph.harvard.edu/press-releases/2006-releases/press04252006.html
[7]  7 Rutter M. Aetiology of autism: Findings and questions. J Intellect Disabil Res, 2005, 49: 231-238
[8]  8 Huguet G, Ey E, Bourgeron T. The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet, 2013, 14: 191-213
[9]  9 Ledford J R, Gast D L. Feeding problems in children with autism spectrum disorders: A review. Focus Autism Other Dev Stud, 2006, 21: 153-166
[10]  10 Sharp W G, Jaquess D L, Lukens C T. Multi-method assessment of feeding problems among children with autism spectrum disorders. Res Autism Spectr Disord, 2013, 7: 56-65
[11]  11 Zimmer M, Hart L, Manning Courtney P, et al. Food variety as a predictor of nutritional status among children with autism. J Autism Dev Disord, 2012, 42: 549-556
[12]  12 Hediger M, England L, Molloy C, et al. Reduced bone cortical thickness in boys with autism or autism spectrum disorder. J Autism Dev Disord, 2008, 38: 848-856
[13]  13 Bandini L G, Anderson S E, Curtin C, et al. Food selectivity in children with autism spectrum disorders and typically developing children. J Pediatr, 2010, 157: 259-264
[14]  14 Krajmalnik-Brown R, Lozupone C, Kang D W, et al. Gut bacteria in children with autism spectrum disorders: Challenges and promise of studying how a complex community influences a complex disease. Microb Ecol Health Dis, 2015, 26: 26914
[15]  15 Gugusheff J R, Ong Z Y, Muhlhausler B S. The early origins of food preferences: Targeting the critical windows of development. FASEB J, 2014, 29: 365-373
[16]  16 Gardener H, Spiegelman D, Buka S L. Perinatal and neonatal risk factors for autism: A comprehensive meta-analysis. Pediatrics, 2011, 128: 344-355
[17]  17 Ong Z Y, Muhlhausler B S. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J, 2011, 25: 2167-2179
[18]  18 Surén P, Roth C, Bresnahan M, et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA, 2013, 309: 570-577
[19]  19 James S J, Melnyk S, Fuchs G, et al. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr, 2009, 89: 425-430
[20]  20 Bohannon J. The theory? Diet causes violence. The Lab? Prison. Science, 2009, 325: 1614-1616
[21]  21 Bjorklund G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp, 2013, 73: 225-236
[22]  22 Vela G, Stark P, Socha M, et al. Zinc in gut-brain interaction in autism and neurological disorders. Neural Plas, 2015, 2015: 972791
[23]  23 Yang Y F. Nutritional metabonomics application in pediatric child care (in Chinese). Chin J Child Care, 2015, 23: 225-237 [杨玉凤. 营养代谢组学在儿科儿童保健中的应用. 中国儿童保健杂志, 2015, 23: 225-
[24]  24 Adams J, Johansen L, Powell L, et al. Gastrointestinal flora and gastrointestinal status in children with autism—comparisons to typical children and correlation with autism severity. BMC Gastroenterol, 2011, 11: 22
[25]  25 Adams J B, Holloway C. Pilot study of a moderate dose multivitamin/mineral supplement for children with autistic spectrum disorder. J Altern Complement Med, 2004, 10: 1033-1039
[26]  26 Adams J, Audhya T, McDonough Means S, et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab, 2011, 8: 1
[27]  27 Adams J, Audhya T, McDonough Means S, et al. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr, 2011, 11: 1-30
[28]  28 Lelord G, Muh J P, Barthelemy C, et al. Effects of pyridoxine and magnesium on autistic symptoms—initial observations. J Autism Dev Disord, 1981, 11: 219-230
[29]  29 Bertoglio K, James S J, Deprey L, et al. Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism. J Altern Complement Med, 2010, 16: 555-560
[30]  30 Hallahan B, Garland M R. Essential fatty acids and mental health. Br J Psychiatry, 2005, 186: 275-277
[31]  31 Kidd P M. Omega-3 DHA and EPA for cognition, behavior, and mood: Clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev, 2007, 12: 207-227
[32]  32 Logan A C. Omega-3 fatty acids and major depression: A primer for the mental health professional. Lipids Health Dis, 2004, 3: 25
[33]  33 James S, Montgomery P, Williams K. Omega-3 fatty acids supplementation for autism spectrum disorders (ASD). Cochrane Database Syst Rev, 2011, 11: CD007992
[34]  34 Mostafa G, Al-Ayadhi L. Reduced levels of plasma polyunsaturated fatty acids and serum carnitine in autistic children: Relation to gastrointestinal manifestations. Behav Brain Funct, 2015, 11: 1-7
[35]  35 Amminger G P, Berger G E, Sch?fer M R, et al. Omega-3 fatty acids supplementation in children with autism: A double-blind randomized, placebo-controlled pilot study. Biol Psychiatry, 2007, 61: 551-553
[36]  36 Bent S, Bertoglio K, Ashwood P, et al. A pilot randomized controlled trial of omega-3 fatty acids for autism spectrum disorder. J Autism Dev Disord, 2011, 41: 545-554
[37]  37 Mankad D, Dupuis A, Smile S, et al. A randomized, placebo controlled trial of omega-3 fatty acids in the treatment of young children with autism. Mol Autism, 2015, 6: 1-11
[38]  88 El-Ansary A, Al-Ayadhi L. Neuroinflammation in autism spectrum disorders. J Neuroinflammation, 2012, 9: 265
[39]  89 Enstrom A, Krakowiak P, Onore C, et al. Increased IgG4 levels in children with autism disorder. Brain Behav Immun, 2009, 23: 389-395
[40]  90 McLean M H, Dieguez D, Miller L M, et al. Does the microbiota play a role in the pathogenesis of autoimmune diseases? Gut, 2014, 64: 332-341
[41]  91 Ling Z, Li Z, Liu X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol, 2014, 80: 2546-2554
[42]  92 Cénit M C, Matzaraki V, Tigchelaar E F, et al. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta, 2014, 1842: 1981-1992
[43]  93 Becker K G. Autism, asthma, inflammation, and the hygiene hypothesis. Med Hypotheses, 2007, 69: 731-740
[44]  94 McCann D, Barrett A, Cooper A, et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. Lancet, 2007, 370: 1560-1567
[45]  95 Dufault R, Lukiw W, Crider R, et al. A macroepigenetic approach to identify factors responsible for the autism epidemic in the United States. Clin Epigenetics, 2012, 4: 6
[46]  96 Chassaing B, Koren O, Goodrich J K, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 2015, 519: 92-96
[47]  97 James S J, Cutler P, Melnyk S, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr, 2004, 80: 1611-1617
[48]  98 James S J, Melnyk S, Jernigan S, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet, 2006, 141B: 947-956
[49]  99 Roberts E M, English P B, Grether J K, et al. Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the california central valley. Environ Health Perspect, 2007, 115: 1482-1489
[50]  100 Yassa H A. Autism: A form of lead and mercury toxicity. Environ Health Perspect, 2014, 38: 1016-1024
[51]  101 Adams J, Audhya T, McDonough-Means S, et al. Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol Trace Elem Res, 2013, 151: 171-180
[52]  102 Rutter M. Incidence of autism spectrum disorders: Changes over time and their meaning. Acta P?diatrica, 2005, 94: 2-15
[53]  103 Garrecht M, Austin D W. The plausibility of a role for mercury in the etiology of autism: A cellular perspective. Toxicol Environ Chem, 2011, 93: 1251-1273
[54]  147 Williams B L, Hornig M, Parekh T, et al. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio, 2012, 3: e00261
[55]  148 Benach J L, Li E, McGovern M M. A microbial association with autism. MBio, 2012, 3: pii:e00019-12
[56]  149 Akins R S, Angkustsiri K, Hansen R. Complementary and alternative medicine in autism: An evidence-based approach to negotiating safe and efficacious interventions with families. Neurotherapeutics, 2010, 7: 307-319
[57]  150 McCormick D A. GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol, 1989, 62: 1018-1027
[58]  151 Komura J, Tamai I, Senmaru M, et al. Brain-to-blood active transport of b-alanine across the blood-brain barrier. FEBS Lett, 1997, 400: 131-135
[59]  152 Ishiwari K, Mingote S, Correa M, et al. The GABA uptake inhibitor b-alanine reduces pilocarpine-induced tremor and increases extracellular GABA in substantia nigra pars reticulata as measured by microdialysis. J Neurosci Methods, 2004, 140: 39-46
[60]  153 Aldred S, Moore K, Fitzgerald M, et al. Plasma amino acid levels in children with autism and their families. J Autism Dev Disord, 2003, 33: 93-97
[61]  154 Burrus C J. A biochemical rationale for the interaction between gastrointestinal yeast and autism. Med Hypotheses, 2012, 79: 784-785
[62]  155 Ka?u?na Czaplińska J, B?aszczyk S. The level of arabinitol in autistic children after probiotic therapy. Nutrition, 2012, 28: 124-126
[63]  156 Finegold S M, Dowd S E, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 2010, 16: 444-453
[64]  157 Angelis M D, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One, 2013, 8: e76993
[65]  158 Wang L, Christophersen C T, Sorich M J, et al. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Psychiatry, 2013, 4: 42
[66]  159 Gondalia S V, Palombo E A, Knowles S R, et al. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical Siblings. Autism Res, 2012, 5: 419-427
[67]  160 Hsiao E Y, McBride S W, Hsien S, et al. The microbiota modulates gut physiology and behavioral abnormalities associated with autism. Cell, 2013, 155: 1451-1463
[68]  161 Tomova A, Husarova V, Lakatosova S, et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav, 2015, 138: 179-187
[69]  162 DO R W, Roberts E, Sichel L S, et al. Improvements in gastrointestinal symptoms among children with autism spectrum disorder receiving the Delpro? probiotic and immunomodulator formulation. Prob Health, 2013, 1: 102
[70]  163 Tabbers M M, de Milliano I, Roseboom M G, et al. Is Bifidobacterium breve effective in the treatment of childhood constipation? Results from a pilot study. Nutr J, 2011, 10: 19
[71]  164 Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr, 2015, 113: S1-S5
[72]  165 Walsh C J, Guinane C M, O’Toole P W, et al. Beneficial modulation of the gut microbiota. FEBS Lett, 2014, 588: 4120-4130
[73]  166 David L A, Maurice C F, Carmody R N, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505: 559-563
[74]  167 Nam Y, Jung M, Roh S W, et al. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One, 2011, 6: e22109
[75]  168 De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA, 2010, 107: 14691-14696
[76]  169 Guarner F, Malagelada J R. Gut flora in health and disease. Lancet, 2003, 361: 512-519
[77]  170 Hamer H M, Jonkers D, Venema K, et al. Review article: The role of butyrate on colonic function. Aliment Pharmacol Ther, 2008, 27: 104-119
[78]  171 Gottschall E. Digestion-gut-autism connection: The specific carbohydrate diet. Med Veritas, 2004, 1: 261-271
[79]  172 McBride N C. Gut and psychology syndrome diet, The GAPS diet. http://www.gapsdiet.com/Resources.html2003
[80]  173 Qu F, Weischler L B, Sundell J, et al. Increasing prevalence of asthma and allergy in Beijing pre-school children: Is exclusive breastfeeding for more than 6 months protective? (in Chinese). Chin Sci Bull, 2013, 58: 2513-2526 [屈芳, Weischler L B, Sundell J, 等. 纯母乳喂养对北京学龄前儿童哮喘和过敏性疾病患病率的影响. 科学通报, 2013, 58: 2513-
[81]  174 Le Hu?rou-Luron I, Blat S, Boudry G. Breastvs. formula-feeding: Impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev, 2010, 23: 23-36
[82]  175 Gueimonde M, Laitinen K, Salminen S, et al. Breast milk: A source of Bifidobacteria for infant gut development and maturation? Neonatol, 2007, 92: 64-66
[83]  176 Midtvedt T. The gut: A triggering place for autism possibilities and challenges. Microb Ecol Health Dis, 2012, 23: 18982
[84]  177 Lai M C, Lombardo M V, Baron-Cohen S. Autism. Lancet, 2014, 383: 896-910
[85]  178 Levy S E, Mandell D S, Schultz R T. Autism. Lancet, 2009, 374: 1627-1638
[86]  179 Patel R M, Denning P W. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin Perinatol, 2013, 40: 11-25
[87]  180 Aroniadis O C, Brandt L J. Fecal microbiota transplantation: Past, present and future. Curr Opin Gastroenterol, 2013, 29: 79-84
[88]  181 Kawicka A, Regulska-Ilow B. How nutritional status, diet and dietary supplements can affect autism. A review. Rocz Panstw Zakl Hig, 2013, 64: 1-12
[89]  182 Anagnostou E, Hansen R. Medical treatment overview: Traditional and novel psycho-pharmacological and complementary and alternative medications. Curr Opin Pediat, 2011, 23: 621-627
[90]  183 McDonald D, Hornig M, Lozupone C, et al. Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microb Ecol Health Dis, 2015, 26: 26555
[91]  80 Trajkovski V, Petlichkovski A, Efinska Mladenovska O, et al. Higher plasma concentration of food-specific antibodies in persons with autistic disorder in comparison to their siblings. Focus Autism Other Dev Stud, 2008, 23: 176-185
[92]  81 Filiano A J, Gadani S P, Kipnis J. Interactions of innate and adaptive immunity in brain development and function. Brain Res, 2014, doi: 10.1016/j.brainres.2014.07.050
[93]  82 Licinio J, Alvarado I, Wong M L. Autoimmunity in autism. Mol Psychiatry, 2002, 7: 375-382
[94]  83 Samsam M, Ahangari R, Naser S A. Pathophysiology of autism spectrum disorders: Revisiting gastrointestinal involvement and immune imbalance. World J Gastroenterol, 2014, 20: 9942-9951
[95]  84 Comi A M, Zimmerman A W, Frye V H, et al. Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol, 1999, 14: 388-394
[96]  85 Licinio J, Wong M. The role of inflammatory mediators in the biology of major depression: Central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry, 1999, 4: 317-327
[97]  86 Cohly H H, Panja A. Immunological findings in autism. Int rev neurobiol, 2005, 71: 317-341
[98]  87 Hashim H, Abdelrahman H, Mohammed D, et al. Association between plasma levels of transforming growth factor-b1, IL-23 and IL-17 and the severity of autism in Egyptian children. Res Autism Spe Dis, 2013, 7: 199-204
[99]  104 Rowland I R, Davies M J, Evans J G. Tissue content of mercury in rats given methylmercuric chloride orally: Influence of intestinal flora. Arch Environ Health, 1980, 35: 155-160
[100]  105 Madsen K M, Hviid A, Vestergaard M, et al. A population-based study of measles, mumps, and rubella vaccination and autism. N Engl J Med, 2002, 347: 1477-1482
[101]  106 Parker S K, Schwartz B, Todd J, et al. Thimerosal-containing vaccines and autistic spectrum disorder: A critical review of published original data. Pediatrics, 2004, 114: 793-804
[102]  107 Furness J B. The Enteric Nervous System. Hoboken: Blackwell Publishing, 2007
[103]  108 Gershon M. The second brain: A Groundbreaking New Understanding of Nervous Disorders of the Stomach and Intestine. New York: HarperCollins Publishers, Inc., 1999
[104]  109 Grenham S, Clarke G, Cryan J F, et al. Brain gut microbe communication in health and disease. Front Physiol, 2011, 2: 1-15
[105]  110 Forsythe P, Sudo N, Dinan T, et al. Mood and gut feelings. Brain Behav Immun, 2010, 24: 9-16
[106]  111 Luo J, Jin F. Recent advances in understanding the impact of intestinal microbiota on host behavior (in Chinese). Chin Sci Bull, 2014, 59: 2169-2190 [罗佳, 金锋. 肠道菌群影响宿主行为的研究进展. 科学通报, 2014, 59: 2169-
[107]  112 Mayer E A, Padua D, Tillisch K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? BioEssays, 2014, 36: 933-939
[108]  113 van De Sande M M H, van Buul V J, Brouns F J P H. Autism and nutrition: The role of the gut-brain axis. Nutr Res Rev, 2014, 27: 199-214
[109]  114 O’Hara A M, Shanahan F. The gut flora as a forgotten organ. EMBO Rep, 2006, 7: 688-693
[110]  115 Zhu B, Wang X, Li L. Human gut microbiome: The second genome of human body. Protein Cell, 2010, 1: 718-725
[111]  116 Gill S R, Pop M, DeBoy R T, et al. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312: 1355-1359
[112]  117 Compare D, Coccoli P, Rocco A, et al. Gut-liver axis: The impact of gut microbiota on non alcoholic fatty liver disease. Nutri Metab Cardiovasc Dis, 2012, 22: 471-476
[113]  118 Hood L. Tackling the microbiome. Science, 2012, 336: 1209
[114]  119 Clemente J C, Ursell L K, Parfrey L W, et al. The impact of the gut microbiota on human health: An integrative view. Cell, 2012, 148: 1258-1270
[115]  120 Finegold S M, Molitoris D, Song Y, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis, 2002, 35: S6-S16
[116]  121 Shreiner A B, Kao J Y, Young V B. The gut microbiome in health and in disease. Curr Opin Gastroenterol, 2015, 31: 69-75
[117]  122 Heijtz R D, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA, 2011, 108: 3047-3052
[118]  123 Liang S, Wang T, Hu X, et al. Microorganism and behavior and psychiatric disorders (in Chinese). Adv Psych Sci, 2012, 20: 75-97 [梁姗, 王涛, 胡旭, 等. 微生物与行为和精神疾病. 心理科学进展, 2012, 20: 75-
[119]  124 Foster J A, McVey Neufeld K A. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci, 2013, 36: 305-312
[120]  125 Cryan J F, O’Mahony S M. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol Motil, 2011, 23: 187-192
[121]  126 O’Mahony S M, Clarke G, Borre Y E, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res, 2015, 277: 32-48
[122]  127 Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature, 2011, 473: 174-180
[123]  128 Wu G D, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011, 334: 105-108
[124]  129 Kang D W, Park J G, Ilhan Z E, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One, 2013, 8: e68322
[125]  130 Koenig J E, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA, 2011, 108: 4578-4585
[126]  131 Borre Y E, O’Keeffe G W, Clarke G, et al. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol Med, 2014, 20: 509-518
[127]  132 Aagaard K, Ma J, Antony K M, et al. The placenta harbors a unique microbiome. Sci Transl Med, 2014, 6: 237-265
[128]  133 Francis S S, Selvin S, Metayer C, et al. Mode of delivery and risk of childhood leukemia. Cancer Epidemiol Biomarkers Prev, 2014, 23: 876-881
[129]  134 Neu J. The pre-and early postnatal microbiome: Relevance to subsequent health and disease. Neoreviews, 2013, 14: e592-e599
[130]  135 Breitbart M, Haynes M, Kelley S, et al. Viral diversity and dynamics in an infant gut. Res Microbiol, 2008, 159: 367-373
[131]  136 Dominguez-Belloa M G, Costellob E K, Contrerasc M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA, 2010, 107: 11971-11975
[132]  137 Gao J, Song H, Duan Y H, et al. Antenatal and postnatal situation survey of 202 cases children with autism and its influential factors in Shenzhen city (in Chinese). Chin J Child Care, 2015, 23: 319-321 [高建, 宋慧, 段永恒, 等. 深圳市202例孤独症儿童出生前后状况调查及影响因素分析. 中国儿童保健杂志, 2015, 23: 319-
[133]  138 Schwartz S, Friedberg I, Ivanov I V, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol, 2012, 13: r32
[134]  139 Rosenfeld C S. Microbiome disturbances and autism spectrum disorders. Drug Metab Dispos, 2015, pii: dmd.115.063826
[135]  140 Toh M C, Allen-Vercoe E. The human gut microbiota with reference to autism spectrum disorder: Considering the whole as more than a sum of its parts. Microb Ecol Health Dis, 2015, 26: 26309
[136]  141 Song Y, Liu C, Molitoris D R, et al. Clostridium bolteae sp. nov., isolated from human sources. Syst Appl Microbiol, 2003, 26: 84-89
[137]  142 Song Y, Liu C, Finegold S M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol, 2004, 70: 6459-6465
[138]  143 Parracho H M, Bingham M O, Gibson G R, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol, 2005, 54: 987-991
[139]  144 Sandler R H, Finegold S M, Bolte E R, et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol, 2000, 15: 429-435
[140]  145 Finegold S M. State of the art; microbiology in health and disease. Intestinal bacterial flora in autism. Anaerobe, 2011, 17: 367-368
[141]  146 Finegold S M, Downes J, Summanen P H. Microbiology of regressive autism. Anaerobe, 2012, 18: 260-262
[142]  38 Keunen K, van Elburg R M, van Bel F, et al. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr Res, 2015, 77: 148-155
[143]  39 Chez M G, Buchanan C P, Aimonovitch M C, et al. Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol, 2002, 17: 833-837
[144]  40 Dolske M C, Spollen J, McKay S, et al. A preliminary trial of ascorbic acid as supplemental therapy for autism. Prog Neuropsychopharmacol Biol Psychiatry, 1993, 17: 765-774
[145]  41 Buie T, Campbell D B, Fuchs G J, et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: A consensus report. Pediatrics, 2010, 125: S1-S18
[146]  42 Wakefield A J, Anthony A, Murch S H, et al. Enterocolitis in children with developmental disorders. Am J Gastroenterol, 2000, 95: 2285-2295
[147]  43 White J F. Intestinal pathophysiology in autism. Exp Biol Med, 2003, 228: 639-649
[148]  44 de Magistris L, Picardi A, Siniscalco D, et al. Antibodies against food antigens in patients with autistic spectrum disorders. Biomed Res Int, 2013, 2013: 729349
[149]  45 Horvath K, Papadimitriou J C, Rabsztyn A, et al. Gastrointestinal abnormalities in children with autistic disorder. J Pediatrics, 1999, 135: 559-563
[150]  46 Wakefield A J, Puleston J M, Montgomery S M, et al. The concept of entero-colonic encephalopathy, autism and opioid receptor ligands. Aliment Pharmacol Ther, 2002, 16: 663-674
[151]  47 de Magistris L, Familiari V, Pascotto A, et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatric Gastroenterol Nutr, 2010, 51: 418-424
[152]  48 Adams J B, Audhya T, McDonough Means S, et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab, 2011, 8: 1
[153]  49 Wang L, Christophersen C T, Sorich M J, et al. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci, 2012, 57: 2096-2102
[154]  50 Johnson C, Handen B, Zimmer M, et al. Effects of gluten free/casein free diet in young children with autism: A pilot study. J Dev Phys Disabil, 2011, 23: 213-225
[155]  51 Cornish E. Gluten and casein free diets in autism: A study of the effects on food choice and nutrition. J Hum Nutr Diet, 2002, 15: 261-269
[156]  52 Knivsberg A M, Reichelt K L, H?ien T, et al. A randomised, controlled study of dietary intervention in autistic syndromes. Nutr Neurosci, 2002, 5: 251-261
[157]  53 Whiteley P, Shattock P, Knivsberg A M, et al. Gluten-and casein-free dietary intervention for autism spectrum conditions. Front Hum Neurosci, 2012, 6: 344
[158]  54 Goin-Kochel R P, Mackintosh V H, Myers B J. Parental reports on the efficacy of treatments and therapies for their children with autism spectrum disorders. Res Autism Spectr Disord, 2009, 3: 528-537
[159]  55 Elder J H. The gluten-free, casein-free diet in autism: An overview with clinical implications. Nutr Clin Pract, 2008, 23: 583-588
[160]  56 Pedersen L, Parlar S, Kvist K, et al. Data mining the ScanBrit study of a gluten-and casein-free dietary intervention for children with autism spectrum disorders: Behavioural and psychometric measures of dietary response. Nutr Neurosci, 2013, 17: 207-213
[161]  57 Whiteley P. Nutritional management of (some) autism: A case for gluten-and casein-free diets? Proc Nutr Soc, 2014, 14: 1-6
[162]  58 Millward C, Ferriter M, Calver S, et al. Gluten-free and casein-free diets for autistic spectrum disorder. Cochrane Database Syst Rev, 2008, 2: CD003498
[163]  59 Boccuto L, Chen C F, Pittman A, et al. Decreased tryptophan metabolism in patients with autism spectrum disorders. Mol Autism, 2013, 4: 16
[164]  60 Scott M M, Deneris E S. Making and breaking serotonin neurons and autism. Int J Dev Neurosci, 2005, 23: 277-285
[165]  61 Chugani D C, Muzik O, Behen M, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol, 1999, 45: 287-295
[166]  62 Burgess N, Sweeten T, McMahon W, et al. Hyperserotoninemia and altered immunity in autism. J Autism Dev Disord, 2006, 36: 697-704
[167]  63 Yang C J, Tan H P, Du Y J. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience, 2014, 267: 1-10
[168]  64 Nakamura K, Sekine Y, Ouchi Y, et al. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry, 2010, 67: 59-68
[169]  65 Melke J, Goubran Botros H, Chaste P, et al. Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry, 2007, 13: 90-98
[170]  66 Stone T W, Darlington L G. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov, 2002, 1: 609-620
[171]  67 Geier D A, Kern J K, Garver C R, et al. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res, 2009, 34: 386-393
[172]  68 Waring R H, Klovrza L V. Sulphur metabolism in autism. J Nutr Env Med, 2000, 10: 25-32
[173]  69 Frye R E, James S J. Metabolic pathology of autism in relation to redox metabolism. Biomarker Med, 2014, 8: 321-330
[174]  70 Gruber K, Kratky C. Cobalamin-dependent Methionine Synthase. Handbook of Metalloproteins. Hoboken: John Wiley & Sons, Ltd, 2006
[175]  71 Kern J K, Jones A M. Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health B Crit Rev, 2006, 9: 485-499
[176]  72 Deth R, Muratore C, Benzecry J, et al. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology, 2008, 29: 190-201
[177]  73 Jill James S, Melnyk S, Jernigan S, et al. Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism. J Autism Dev Disord, 2008, 38: 1966-1975
[178]  74 Field D, Garland M, Williams K. Correlates of specific childhood feeding problems. J Paediatr Child Health, 2003, 39: 299-304
[179]  75 Filipek P, Juranek J, Nguyen M, et al. Relative carnitine deficiency in autism. J Autism Dev Disord, 2004, 34: 615-623
[180]  76 Chugani D C, Sundram B S, Behen M, et al. Evidence of altered energy metabolism in autistic children. Prog Neuropsychopharmacol Biol Psychiatry, 1999, 23: 635-641
[181]  77 Vancassel S, Durand G, Barthélémy C, et al. Plasma fatty acid levels in autistic children. Prostaglandins Leukot Essent Fatty Acids, 2001, 65: 1-7
[182]  78 Shultz S R, MacFabe D F, Ossenkopp K P, et al. Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: Implications for an animal model of autism. Neuropharmacol, 2008, 54: 901-911
[183]  79 Li S S, Jia M X, Sun Z G, et al. The clinical effects of fasting sensitive food in patients with autism spectrum disorders (in Chinese). Int J Psychiatry, 2015, 42: 23-26 [李素水, 贾美香, 孙志刚, 等. 禁食敏感食物对孤独症谱系障碍患者的临床疗效研究. 国际精神病学杂志, 2015, 42: 23-

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133