全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

路径积分分子动力学模拟在相变问题中的应用

DOI: 10.1360/N972015-00136, PP. 2824-2832

Keywords: 路径积分,分子动力学,核量子效应,两相法,自由能计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

依据玻恩-奥本海默近似,理论模拟分子与凝聚态体系材料的性质,需要人们对电子结构和原子核运动两个层面的内容都进行尽量准确描述.目前,电子结构的计算已相对成熟,很多情况下密度泛函理论、传统量化或量子蒙特卡洛方法都能在量子力学的层面给出相当精准的结果;但就原子核运动的描述而言,绝大部分理论方法却还依赖于经典力学.越来越多的实验和理论工作表明,在很多材料的相变过程中,原子核的量子属性可能对相变行为产生重要的影响.将路径积分分子动力学方法与两相法、自由能计算等分子模拟方法结合,可以有效地处理相变问题中的核量子效应,进而对材料的相变行为进行准确地描述.本文将结合两个具体的例子,简要介绍近几年我们在该研究方向的一些工作进展.

References

[1]  1 Beck M H, J?ckle A, Worth G A, et al. The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets. Phys Rep, 2000, 324: 1-105
[2]  2 Althorpe S C, Clary D C. Quantum scattering calculations on chemical reactions. Annu Rev Phys Chem, 2003, 54: 493-529
[3]  3 Zhang D H, Collins M A, Lee S Y. First-principles theory for the H+H2O, D2O reactions. Science, 2000, 290: 961-963
[4]  4 Collins M A. Molecular potential-energy surfaces for chemical reaction dynamics. Theor Chem Acc, 2002, 108: 313-324
[5]  5 Marx D, Parrinello M. Structural quantum effects and three-centre two-electron bonding in CH5+. Nature, 1995, 375: 216-218
[6]  6 Marx D, Parrinello M. The effect of quantum and thermal fluctuations on the structure of the floppy molecule C2H3+. Science, 1996, 271: 179-181
[7]  7 Tuckerman M E, Marx D, Klein M L, et al. On the quantum nature of the shared proton in hydrogen bonds. Science, 1997, 275: 817-820
[8]  8 Benoit M, Marx D, Parrinello M. Tunnelling and zero-point motion in high-pressure ice. Nature, 1998, 392: 258-261
[9]  9 Marx D, Tuckerman M E, Hutter J, et al. The nature of the hydrated excess proton in water. Nature, 1999, 397: 601-604
[10]  10 Marx D, Parrinello Molecular spectroscopy—CH5+: The Cheshire cat smiles. Science, 1999, 284: 59-61
[11]  11 Tuckerman M E, Marx D, Parrinello M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature, 2002, 417: 925-929
[12]  12 Wang Y, Ma Y. Perspective: Crystal structure prediction at high pressures. J Chem Phys, 2014, 140: 040901
[13]  13 Pamuk B, Soler J M, Ramírez R, et al. Anomalous nuclear quantum effects in ice. Phys Rev Lett, 2012, 108: 193003
[14]  14 Nagata Y, Pool R E, Backus E H G, et al. Nuclear quantum effects affect bond orientation of water at the water-vapor interface. Phys Rev Lett, 2012, 109: 226101
[15]  15 Ceriotti M, Cuny J, Parrinello M, et al. Nuclear quantum effects and hydrogen bond fluctuations in water. Proc Natl Acad Sci USA, 2013, 110: 15591-15596
[16]  16 Drechsel-Grau C, Marx D. Quantum simulation of collective proton tunneling in hexagonal ice crystals. Phys Rev Lett, 2014, 112: 148302
[17]  17 Wang Y, Babin V, Bowman J M, et al. The water hexamer: Cage, prism, or both. full dimensional quantum simulations say both. J Am Chem Soc, 2012, 134: 11116-11119
[18]  18 Li X Z, Probert M I J, Alavi A, et al. Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. Phys Rev Lett, 2010, 104: 066102
[19]  19 Li X Z, Walker B, Michaelides A. Quantum nature of the hydrogen bond. Proc Natl Acad Sci USA, 2011, 108: 6369-6373
[20]  20 Guillaume C L, Gregoryanz E, Degtyareva O, et al. Cold melting and solid structures of dense lithium. Nat Phys, 2011, 7: 211-214
[21]  21 Chen J, Li X Z, Zhang Q, et al. Quantum simulation of low-temperature metallic liquid hydrogen. Nat Commun, 2013, 4: 2064
[22]  22 Li X Z, Walker B, Probert M I J, et al. Classical and quantum ordering of protons in cold solid hydrogen under megabar pressures. J Phys Condens Matter, 2013, 25: 085402
[23]  23 Alfè D, Gillan M J, Price G D. Complementary approaches to the ab initio calculation of melting properties. J Chem Phys, 2002, 116: 6170-6177
[24]  24 Cao J, Voth G A. The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics. J Chem Phys, 1994, 101: 6168-6183
[25]  25 Hernández E R, Rodriguez-Prieto A, Bergara A, et al. First-principles simulations of lithium melting: Stability of the bcc phase close to melting. Phys Rev Lett, 2010, 104: 185701
[26]  26 Feng Y, Chen J, Alfe D, et al. Nuclear quantum effects on the high pressure melting of dense lithium. J Chem Phys, 2015, 142: 064506
[27]  27 Morales J J, Singer K. Path integral simulation of the free energy of (Lennard-Jones) neon. Mol Phys, 1991, 73: 873-880
[28]  28 Habershon S, Manolopoulos D E. Thermodynamic integration from classical to quantum mechanics. J Chem Phys, 2011, 135: 224111
[29]  29 Wigner E, Huntington H B. On the possibility of a metallic modification of hydrogen. J Chem Phys, 1935, 3: 764-770
[30]  30 Loubeyre P, Occelli F, LeToullec R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature, 2002, 416: 613-617
[31]  31 Eremets M I, Troyan I A. Conductive dense hydrogen. Nat Mater, 2011, 10: 927-931
[32]  32 Zha C S, Liu Z, Hemley R J. Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys Rev Lett, 2012, 108: 146402
[33]  33 Bonev S A, Schwegler E, Ogitsu T, et al. A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature, 2004, 431: 669-672
[34]  34 Deemyad S, Silvera I F. Melting line of hydrogen at high pressures. Phys Rev Lett, 2008, 100: 155701
[35]  35 Babaev E, Sudb? A, Ashcroft N W. A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature, 2004, 431: 666-668
[36]  36 McMahon J M, Ceperley D M. High-temperature superconductivity in atomic metallic hydrogen. Phys Rev B, 2011, 84: 144515
[37]  37 Ashcroft N W. Metallic hydrogen: A high-temperature superconductor? Phys Rev Lett, 1968, 21: 1748
[38]  38 McMahon J M, Morales M A, Pierleoni C, et al. The properties of hydrogen and helium under extreme conditions. Rev Mod Phys, 2012, 84: 1607-1653
[39]  39 Loubeyre P, LeToullec R, Hausermann D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 1996, 383: 702-704
[40]  40 Eremets M I, Troyan I A. Conductive dense hydrogen. Nat Mater, 2011, 10: 927-931
[41]  41 Howie R T, Guillaume C L, Scheler T, et al. Mixed molecular and atomic phase of dense hydrogen. Phys Rev Lett, 2012, 108: 125501
[42]  42 Liu H, Ma Y. Proton or deuteron transfer in phase IV of solid hydrogen and deuterium. Phys Rev Lett, 2013, 110: 025903
[43]  43 Marqués M, McMahon M I, Gregoryanz E, et al. Crystal structures of dense lithium: A meal-semiconductor-metal transition. Phys Rev Lett, 2011, 106: 095502
[44]  44 Shimizu K, Ishikawa H, Takao D, et al. Superconductivity in compressed lithium at 20 K. Nature, 2002, 419: 597-599
[45]  45 Lazicki A, Fei Y, Hemley R J. High-pressure differential thermal analysis measurements of the melting curve of lithium. Solid State Commun, 2010, 150: 625-627
[46]  46 Schaeffer A M J, Talmadge W B, Temple S R, et al. High pressure melting of lithium. Phys Rev Lett, 2012, 109: 185702
[47]  47 Li B, Ding Y, Yang W, et al. Calcium with the b-tin structure at high pressure and low temperature. Proc Natl Acad Sci USA, 2012, 109: 16459-16462
[48]  48 Yabuuchi T, Matsuoka T, Nakamoto Y, et al. Superconductivity of Ca exceeding 25 K at megabar pressures. J Phys Soc Jpn, 2006, 75: 083703
[49]  49 Teweldeberhan A M, Dubois J L, Bonev S A. High-pressure phases of calcium: Density-functional theory and diffusion quantum Monte Carlo approach. Phys Rev Lett, 2010, 105: 235503
[50]  50 Errea I, Rousseau B, Bergara A. Anharmonic stabilization of the high-pressure simple cubic phase of calcium. Phys Rev Lett, 2011, 106: 165501
[51]  51 Liu H, Cui W, Ma Y. Hybrid functional study rationalizes the simple cubic phase of calcium at high pressures. J Chem Phys, 2012, 137: 184502
[52]  52 Di Gennaro M, Saha S K, Verstraete M J. Role of dynamical instability in the ab initio phase diagram of calcium. Phys Rev Lett, 2013, 111: 025503

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133