全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

高凝油油藏原油析蜡超声波探测与分析

DOI: 10.1360/N972014-01386, PP. 3263-3270

Keywords: 高凝油,析蜡点,析蜡量,析蜡过程,超声波

Full-Text   Cite this paper   Add to My Lib

Abstract:

地层原油的析蜡点是确定注水开发高凝油油藏合理注水温度的关键指标.鉴于地层条件下含气油在原油组成和压力条件的差异,针对目前国内外常规测试方法普遍局限于地面脱气油等实际问题,利用声速、幅度比及频率等声学参数在原油析蜡过程的声学响应,设计制造了一种新型的高凝油析蜡特征的超声波综合探测系统,以乌干达Kingfisher典型高凝油藏脱气油和含气油为例,分别研究了脱气油和含气油在不同压力下的析蜡点、析蜡量及动态析蜡过程.结果表明高凝油的析蜡过程存在明显的结核和生长两个主要阶段;溶解气的存在明显降低了原油的析蜡点;饱和压力以上,压力越高,析蜡点越高;声时、幅度比和频率均可作为判断高凝油析蜡点、析蜡量及析蜡过程的敏感参数.

References

[1]  1 Lionetto F, Coluccia G, D'Antona P, et al. Gelation of waxy crude oils by ultrasonic and dynamic mechanical analysis. Rheol Acta, 2007, 46: 601-609
[2]  2 Juyal P, Cao T, Yen A, et al. Study of live oil wax precipitation with high-pressure micro-differential scanning calorimetry. Energy Fuel, 2011, 25: 568-572
[3]  3 R?nningsen H P, Bjoerndal B, Hansen A B, et al. Wax precipitation from north sea crude oils. 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties. Energy Fuel, 1991, 5: 895-908
[4]  4 Coto B, Martos C, Espada J J, et al. Analysis of paraffin precipitation from petroleum mixtures by means of DSC: Iterative procedure considering solid-liquid equilibrium equations. Fuel, 2010, 89: 1087-1094
[5]  5 Venkatesan R, Singh P, Fogler H S. Delineating the pour point and gelation temperature of waxy crude oils. SPE J, 2002, 7: 349-352
[6]  6 Moritis G. Flow assurance challenges production from deeper water. Oil Gas J, 2001, 99: 66-71
[7]  7 Hansen A B, Larsen E, Pedersen W B, et al. Wax precipitation from north sea crude oils. 3. Precipitation and dissolution of wax studied by differential scanning calorimetry. Energy Fuel, 1991, 5: 914-923
[8]  8 Kok M V, Letoffe J M, Claudy P, et al. Comparison of wax appearance temperatures of crude oils by differential scanning calorimetry, thermomicroscopy and viscometry. Fuel, 1996, 75: 787-790
[9]  9 Elsharkawy A M, Al-Sahhaf T A, Fahim M A. Wax deposition from middle east crudes. Fuel, 2000, 79: 1047-1055
[10]  10 Ashbaugh H S, Radulescu A, Prud'homme R K, et al. Interaction of paraffin wax gels with random crystalline/amorphous hydrocarbon copolymers. Macromolecules, 2002, 35: 7044-7053
[11]  11 Bhat N V, Mehrotra A K. Measurement and prediction of the phase behavior of wax-solvent mixtures: Significance of the wax disappearance temperature. Ind Eng Chem Res, 2004, 43: 3451-3461
[12]  12 Roehner R M, Hanson F V. Determination of wax precipitation temperature and amount of precipitated solid wax versus temperature for crude oils using FT-IR spectroscopy. Energy Fuel, 2001, 15: 756-763
[13]  13 Alex R F, Fuhr B J, Klein L L. Determination of cloud point for waxy crudes using a near-infrared/fiber optic technique. Energy Fuel, 1991, 5: 866-868
[14]  14 Monger-McClure T G, Tackett J E, Merrill L S. Comparisons of cloud point measurement and paraffin prediction methods. SPE Prod Facil, 1999, 14: 4-16
[15]  15 Leontaritis K J, Leontaritis J D. Cloud point and wax deposition measurement techniques. In: Proceedings of SPE International Symposium on Oilfield Chemistry. Houston: SPE, 2003. SPE-80267-MS
[16]  16 Singh P, Fogler H S, Nagarajan N J. Prediction of the wax content of the incipient wax-oil gel in a pipeline: An application of the controlled-stress rheometer. Rheology, 1999, 43: 1437-1459
[17]  17 Kruka V R, Cadena E R, Long T E. Cloud-point determination for crude oils. J Petrol Technol, 1995, 47: 681-687
[18]  18 Uba E, Ikeji K. Measurement of wax appearance temperature of an offshore live crude oil using laboratory light transmission method. In: Proceedings of Nigeria Annual International Conference and Exhibition. Abuja: SPE, 2004. 88963
[19]  19 Pauly J P, Daridon J L, Coutinho J A P. Liquid-solid equilibria in a decaneqmulti-paraffins system. Fluid Phase Equilibr, 1998, 149: 191-207
[20]  20 Thanh N X, Hsieh M, Philip R P. Waxes and asphaltenes in crude oils. Org Geochem, 1999, 30: 119-132
[21]  21 Li H Y, Feng J. To determine the wax appearance temperature of crude oil by wax-crystal microscopic image of quantitative analysis (in Chinese). Oil Gas Storage Transport, 2013, 32: 23-26 [李鸿英, 冯颉. 基于蜡晶显微图像的定量分析确定原油析蜡点. 油气储运, 2013, 32: 23-
[22]  22 Meray V R, Volle J L, Schranz C J P, et al. Influence of light ends on the onset crystallization temperature of waxy crudes within the frame of multiphase transport. In: Proceedings of the 68th Annual Technical Conference and Exhibition. Houston: SPE, 1993. 26549
[23]  23 Brown T S, Niesen V G, Erickson D D. The effects of light ends and high pressure on paraffin formation. In: Proceedings of the 69th Annual Technical Conference and Exhibition. New Orleans: SPE, 1994. SPE-28505
[24]  24 Daridon J, Pauly J, Coutinho J A P, et al. Solid-liquid-vapor phase boundary of a north sea waxy crude: Measurement and modeling. Energy Fuel, 2001, 15: 730-735
[25]  25 Pauly J, Daridon J, Coutinho J A P, et al. Crystallisation of a multiparaffinic wax in normal tetradecane under high pressure. Fuel, 2005, 84: 453-459
[26]  26 Vieira L C, Buchuid M B, Lucas E F. Effect of pressure on the crystallization of crude oil waxes. II. Evaluation of crude oils and condensate. Energ Fuel, 2010, 24: 2213-2220
[27]  27 Lin C D, Liang Y S, Zhang W S, et al. Particle size characterization of wax crystal in crude oil by ultrasound attenuation spectroscopy (in Chinese). Tech Acoust, 2013, 32: 294-298 [林春丹, 梁永燊, 张万松, 等. 超声衰减谱法测量含蜡原油中蜡晶粒度. 声学技术, 2013, 32: 294-
[28]  28 Zhang C, Zheng S Y. Effect of ultrasonic cavitation and its application (in Chinese). J Water Resour Water Eng, 2009, 20: 136-138 [张婵, 郑爽英. 超声空化效应及其应用. 水资源与水工程学报, 2009, 20: 136-
[29]  29 Wunderlich B. Macromolecular Physics. New York: Academic Press, 1976. 1-72
[30]  30 Liu T, Su T M, Sun J. Study on acoustic diversity attenuation properties of rock and foreground of applying in engineering (in Chinese). Prog Geophys, 2005, 20: 833-827 [刘彤, 苏天明, 孙建. 岩石声波差异衰减特征及工程应用前景探讨. 地球物理学进展, 2005, 20: 833-
[31]  31 Su D N, Feng S X. Ultrasonic attenuation of rocks and spectrum variation (in Chinese). J East China Petrol Inst, 1986, 2: 110-116 [苏道宁, 冯世瑄. 岩石的声衰减与声频谱的变化. 华东石油学院学报, 1986, 2: 110-
[32]  32 Queimada A J N, Dauphin C, Marrucho I M, et al. Thermodynamic measurement and prediction of paraffin precipitation in crude oil. Thermochim Acta, 2001, 372: 93-101
[33]  33 Coto B, Martos C, Espada J J, et al. A new DSC-based method to determine the wax porosity of mixtures precipitated from crude oils. Energy Fuel, 2011, 25: 1707-1713
[34]  34 Pedersen K S, R?nningsen H P. Effect of precipitated wax on viscositys-a model for predicting non-newtonian viscosity of crude oils. Energy Fuel, 2000, 14: 43-51
[35]  35 Coutinho J A P, Edmonds B, Moorwood T, et al. Reliable wax predictions for flow assurance. Energy Fuel, 2006, 20: 1081-1088
[36]  36 Ravenscroft P D, McCracken I R, Forsdyke I, et al. Live wax appearance measurements-using real data to strip out conservatism in pipeline design. In: Proceedings of the 19th International Oil Field Chemistry Symposium. Geilo, 2008. 9-12

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133