全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

石墨型C3N4在泡沫陶瓷表面的原位负载及可见光催化空气净化应用

DOI: 10.1360/N972015-00963, PP. 3221-3229

Keywords: 石墨型氮化碳,原位负载,可见光催化,电荷分离,空气净化

Full-Text   Cite this paper   Add to My Lib

Abstract:

g-C3N4是一种具有广泛应用前景的无金属可见光催化剂.为了实现g-C3N4在载体表面的有效负载,本研究以二氰二胺为前驱体,通过溶解-再结晶-热处理原位负载工艺,利用g-C3N4和Al2O3之间的独特物理化学作用力,实现了Al2O3泡沫陶瓷上g-C3N4的牢固负载.用X射线衍射、扫描电子显微镜、透射电子显微镜、比表面积测定、紫外可见漫反射光谱和荧光光谱对样品进行表征分析.系统研究了热处理时间对样品微结构和光催化性能的影响.结果表明,当热处理时间为4h时,负载型g-C3N4具有最优的NO去除率,达57.9%.这可归因于其较大的比表面积和较高的电荷分离效率.本文提供了一种基于光催化剂与载体相互作用的原位负载技术,为g-C3N4在空气净化的实际应用提供了技术支持和理论依据.

References

[1]  1 Lammel G, Cape J N. Nitrous acid and nitrite in the atmosphere. Chem Soc Rev, 1996, 5: 361-369
[2]  2 Spicer C W. Photochemical atmospheric pollutants derived from nitrogen oxides. Atmos Environ, 1977, 11: 1089-1095
[3]  3 Zeng Z, Lu P, Li C, et al. Removal of NO by carbonaceous materials at room temperature: A review. Catal Sci Technol, 2012, 11: 2188-2199
[4]  4 Chu H, Li S Y, Chien T W. The absorption kinetics of no from flue gas in a stirred tank reactor with KMnO4/NaOH solutions. J Environ Sci Health Part A, 1998, 5: 801-827
[5]  5 Tang B, Li J, Wang Y L. Exploration of denitrification adsorbent made from fly ash (in Chinese). Environm Eng, 2006, 3: 45-46 [唐冰, 李坚, 王艳磊, 等. 应用粉煤灰制作脱氮吸附剂的探讨. 环境工程, 2006, 3: 45-
[6]  6 Lee I Y, Kim D W, Lee J B, et al. A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3. Chem Eng J, 2002: 267-272
[7]  7 Ye D Q. Treatment of nitrogen oxides in flue gas streams (in Chinese). Environm Prot Sci, 1999, 4: 1-4 [叶代启. 烟气中氮氧化物污染的治理. 环境保护科学, 1999, 4: 1-
[8]  8 Sada E, Kumazawa H, Kudo I, et al. Individual and simultaneous absorption of dilute NO and SO2 in aqueous slurries of MgSO3 with Fe(II) EDTA. Ind Eng Chem Process Design Develop, 1980: 377-382
[9]  9 Huang Y, Ho W K, Lee S C, et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. Langmuir, 2008, 7: 3510-3516
[10]  10 Ao C H, Lee S C, Yu J C. Photocatalyst TiO2 supported on glass fiber for indoor air purification: Effect of NO on the photodegradation of CO and NO2. J Photochem Photobiol A Chem, 2003, 1-3: 171-177
[11]  11 Zhang T, Zhang Y W, Zhang S Z, et al. Research and applications of visible light responsive narrow band gap semiconductor photocatalytic materials (in Chinese). Mater Rev, 2009, 3: 24-28 [张彤, 张悦炜, 张世著, 等. 可见光响应型窄带隙半导体光催化材料的研究及应用进展. 材料导报, 2009, 3: 24-
[12]  12 Yan S C, Luo W J, Li Z S, et al. Progress in research of novel photocatalytic materials (in Chinese). Mater China, 2010, 1: 1-9 [闫世成, 罗文俊, 李朝升, 等. 新型光催化材料探索和研究进展. 中国材料进展, 2010, 1: 1-
[13]  13 Huang B B, Wang P, Zhang X Y, et al. Progress in research of visible light photocatalysis (in Chinese). Chin Sci Bull (Chin Ver), 2009, 54: 847 [黄柏标, 王朋, 张晓阳, 等. 可见光光催化研究新进展. 科学通报, 2009, 54:
[14]  14 Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 5528: 269-271
[15]  15 Issei T, Hideki K, Hisayoshi K, et al. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc, 2004, 41: 13406-13413
[16]  16 Li Q Y, Zhang J W, Jin Z S, et al. A novel TiO2 with a large amount of bulk intrinsic defects-Visible-light-responded photocatalytic activity induced by foreign trap (in Chinese). Chin Sci Bull (Chin Ver), 2013, 58: 1007-1013 [李秋叶, 张纪伟, 金振声, 等. 含高浓度本征缺陷的新型TiO2: 外来陷阱诱导产生可见光光催化活性. 科学通报, 2013, 58: 1007-
[17]  17 Ji H W, Ma W H, Huang Y P, et al. Progress in visible light responding TiO2 photocatalysts (in Chinese). Chin Sci Bull (Chin Ver), 2004, 49: 2199-2204 [籍宏伟, 马万红, 黄应平, 等. 可见光诱导TiO2光催化的研究进展. 科学通报, 2004, 49: 2199-
[18]  18 Chen S Z, Zhang P Y, Zhu W P, et al. Progress in visible light responding photocatalysts (in Chinese). Prog Chem, 2004, 4: 613-619 [陈崧哲, 张彭义, 祝万鹏, 等. 可见光响应光催化剂研究进展. 化学进展, 2004, 4: 613-
[19]  19 Cao S, Low J, Yu J, et al. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater, 2015, 13: 2150-2176
[20]  20 Dong F, Wu L, Sun Y, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem, 2011, 39: 15171-15174
[21]  21 Chu Z Y, Yuan B, Yan T N. Recent progress in photocatalysis of g-C3N4 (in Chinese). J Inorg Mater, 2014, 8: 785-794 [楚增勇, 原博, 颜廷楠. g-C3N4光催化性能的研究进展. 无机材料学报, 2014, 8: 785-
[22]  22 Zhang J S, Wang B, Wang X C. Chemical synthesis and applications of graphitic carbon nitride (in Chinese). Acta Phys Chim Sin, 2013, 1865-1876 [张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用. 物理化学学报, 2013, 1865-
[23]  23 Zhang J S, Wang B, Wang X C. Carbon nitride polymeric semiconduct for photocatalysis (in Chinese). Prog Chem, 2014, 26: 19-29 [张金水, 王博, 王心晨. 氮化碳聚合物半导体光催化. 化学进展, 2014, 26: 19-
[24]  24 Yuan H, Sun Z, Liu H, et al. Immobilizing carbon nanotubes on sic foam as a monolith catalyst for oxidative dehydrogenation reactions. Chem Catal Chem, 2013, 7: 1713-1717
[25]  25 Dong F, Wang Z, Li Y, et al. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environ Sci Technol, 2014, 17: 10345-10353
[26]  26 Kouamé A N, Masson R, Robert D, et al. β-SiC foams as a promising structured photocatalytic support for water and air detoxification. Catal Today, 2013, 209: 13-20
[27]  27 Yao Y, Ochiai T, Ishiguro H, et al. Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners. Appl Catal B Environ, 2011, 3-4: 592-599
[28]  28 Lin H, Valsaraj K T. Development of an optical fiber monolith reactor for photocatalytic wastewater treatment. J Appl Electrochem, 2005, 7-8: 699-708
[29]  29 Dong F, Sun Y, Wu L, et al. Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal Sci Technol, 2012, 7: 1332-1335
[30]  30 Ge L. Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts. Mater Lett, 2011, 17: 2652-2654
[31]  31 Dong F, Wang Z, Sun Y, et al. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visi- ble light photocatalytic activity. J Colloid Interface Sci, 2013, 401: 70-79
[32]  32 Dong F, Ou M Y, Jiang Y K, et al. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind Eng Chem Res, 2014, 53: 2318-2330
[33]  33 Sing K S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem, 1985, 4: 603-619
[34]  34 Dong F, Li Q, Ho W K, et al. The mechanism of enhanced visible light photocatalysis with microstructurally optimized and graphene oxide coupled (BiO)2CO3 (in Chinese). Chin Sci Bull, 2015, 60: 1915-1923 [董帆, 李秋燕, 何詠基, 等. 微结构优化与GO耦合大幅提高(BiO)2CO3可见光催化性能的机制. 科学通报, 2015, 60: 1915-
[35]  35 Dong F, Xiong T, Sun Y, et al. Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructure. Chem Commun, 2015, 51: 8249-8252

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133